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Abstract

Gaussian Graphical Models (GGMs) are widely used in high-dimensional data analysis
to synthesize the interaction between variables. In many applications, such as genomics or
image analysis, graphical models rely on sparsity and clustering to reduce dimensionality and
improve performances. This paper explores a slightly different paradigm where clustering
is not knowledge-driven but performed simultaneously with the graph inference task. We
introduce a novel Multiscale Graphical Lasso (MGLasso) to improve networks interpretability by
proposing graphs at different granularity levels. The method estimates clusters through a convex
clustering approach — a relaxation of 𝑘-means, and hierarchical clustering. The conditional
independence graph is simultaneously inferred through a neighborhood selection scheme for
undirected graphical models. MGLasso extends and generalizes the sparse group fused lasso
problem to undirected graphical models. We use continuation with Nesterov smoothing in a
shrinkage-thresholding algorithm (CONESTA) to propose a regularization path of solutions along
the group fused Lasso penalty, while the Lasso penalty is kept constant. Extensive experiments
on synthetic data compare the performances of our model to state-of-the-art clustering methods
and network inference models. Applications to gut microbiome data and poplar’s methylation
mixed with transcriptomic data are presented.
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1 Introduction

Probabilistic graphical models (Lauritzen 1996; Koller and Friedman 2009) are widely used in high-
dimensional data analysis to synthesize the interaction between variables. In many applications,
such as genomics or image analysis, graphical models reduce the number of parameters by selecting
the most relevant interactions between variables. Undirected Gaussian Graphical Models (GGMs) are
a class of graphical models used in Gaussian settings. In the context of high-dimensional statistics,
graphical models are generally assumed sparse, meaning that a small number of variables interact
compared to the total number of possible interactions. This assumption has been shown to provide
both statistical and computational advantages by simplifying the structure of dependence between
variables (Dempster 1972) and allowing efficient algorithms (Meinshausen and Bühlmann 2006). See,
for instance, Fan, Liao, and Liu (2016) for a review of sparse graphical models inference.

In GGMs, it is well known (Lauritzen 1996) that inferring the graphical model or, equivalently, the
conditional independence graph (CIG) boils down to inferring the support of the precision matrix
(the inverse of the variance-covariance matrix). Several ℓ1 penalized methods have been proposed in
the literature to learn the CIG of GGMs. For instance, the neighborhood selection (MB, Meinshausen
and Bühlmann 2006) based on a nodewise regression approach via the least absolute shrinkage and
selection operator (Lasso, R. Tibshirani 1996) is a popular method. Each variable is regressed on
the others, taking advantage of the link between the so-obtained regression coefficients and partial
correlations. The MB method has generated a long line of work in nodewise regression methods. For
instance, Rocha, Zhao, and Yu (2008) and Ambroise, Chiquet, and Matias (2009) showed that nodewise
regression could be seen as a pseudo-likelihood approximation and Peng et al. (2009) extended the
MB method to estimate sparse partial correlations using a single regression problem. Other inference
methods similar to nodewise regression include a method based on the Dantzig selector (Yuan 2010)
and the introduction of the Clime estimator (Cai, Liu, and Luo 2011). Another family of sparse
CIG inference methods directly estimates via direct minimization of the ℓ1-penalized negative log-
likelihood (Banerjee, El Ghaoui, and d’Aspremont 2008), without resorting to the auxiliary regression
problem. This method called the graphical Lasso (GLasso, Friedman, Hastie, and Tibshirani 2007),
benefits from many optimization algorithms (Yuan and Lin 2007; Rothman et al. 2008; Banerjee, El
Ghaoui, and d’Aspremont 2008; Hsieh et al. 2014).
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Such inference methods are widely used and enjoy many favorable theoretical and empirical prop-
erties, including robustness to high-dimensional problems. However, some limitations have been
observed, particularly in the presence of strongly correlated variables. Known impairments of Lasso-
type regularization cause these limitations in this context (Bühlmann et al. 2012; Park, Hastie, and
Tibshirani 2006). To overcome this, in addition to sparsity, several previous works attempt to estimate
CIG by integrating clustering structures among variables for statistical sanity and interpretability. A
non-exhaustive list of works that integrate a clustering structure to speed up or improve the estima-
tion procedure includes Honorio et al. (2009), Ambroise, Chiquet, and Matias (2009), Mazumder and
Hastie (2012), Tan, Witten, and Shojaie (2013), Devijver and Gallopin (2018), Yao and Allen (2019).

The above methods exploit the group structure to simplify the graph inference problem and infer
the CIG between single variables. Another question that has received less attention is the inference
of the CIG between the groups of variables, i.e., between the meta-variables representative of the
group structure. A recent work introducing inference of graphical models on multiple grouping
levels is Cheng, Shan, and Kim (2017). They proposed inferring the CIG of gene data on two levels
corresponding to genes and pathways, respectively. Note that pathways are considered as groups of
functionally related genes known in advance. The inference is achieved by optimizing a penalized
maximum likelihood that estimates a sparse network at both gene and group levels. Our work is also
part of this dynamic. We introduce a penalty term allowing parsimonious networks to be built at
different clustering levels. The main difference with the procedure of Cheng, Shan, and Kim (2017) is
that we do not require prior knowledge of the group structure, which makes the problem significantly
more complex. In addition, our method has the advantage of proposing CIGs at more than two levels
of granularity.

We introduce the Multiscale Graphical Lasso (MGLasso), a novel method to estimate simultaneously
a hierarchical clustering structure and graphical models depicting the conditional independence
structure between clusters of variables at each level of the hierarchy. Our approach is based on
neighborhood selection (Meinshausen and Bühlmann 2006) and considers an additional fused-Lasso
type penalty for clustering (Pelckmans et al. 2005; Hocking et al. 2011; Lindsten, Ohlsson, and Ljung
2011).

The use of fusion penalties in Gaussian graphical model inference is a well-studied area. Some prior
works on learning sparse GGMs with a fusion penalty term have focused on penalized likelihood.
Among those, a line of works (Danaher, Wang, and Witten 2014; S. Yang et al. 2015) infers multiple
graphs across several classes while assuming the observations belong to different known clusters.
Another line of research (Honorio et al. 2009; Yao and Allen 2019; Lin et al. 2020) investigates fusion
penalties for enforcing local constancy in the nodes of the inferred network. Variables belonging to
the same clusters are thus more likely to share the same neighborhood. These ordinary likelihood-
based models are computationally challenging compared to pseudo-likelihood approximations. The
unpublished manuscript of Ganguly and Polonik (2014) introduces a fusion-like penalty in the
neighborhood selection framework. However, the problem is solved in a node-wise regression
fashion where the 𝑝 regressions problems are not combined.

Fusion penalties have also been used in simple regression problems (Robert Tibshirani et al. 2005)
and multivariate regression analysis (multitask learning) with multiple outcomes (see, e.g., Chen et
al. 2010; Degras 2021; Dondelinger, Mukherjee, and Initiative 2020; Hallac, Leskovec, and Boyd 2015;
Chu et al. 2021). The defined penalties encourage fusion between predictors in simple regression,
or outcomes that share similar model coefficients in multitask learning. Fusions can be formulated
in a general form assuming no order on the variables as in convex clustering (Hoefling 2010; Petry,
Flexeder, and Tutz 2011) or assuming the availability of prior information about clusters (Rudin,
Osher, and Fatemi 1992; Hallac, Leskovec, and Boyd 2015).
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Themultitask learning framework can be extended to the learning of GGMs. Chiquet, Grandvalet, and
Ambroise (2011) introduced a multitask inference for multiple graphical models when observations
belong to different clusters. In MGLasso, the multitask learning framework is combined with a novel
general fusion penalty to uncover clustering over variables. In the defined fusion term, we consider
reordering the regression coefficients to match common predictors and symmetric coefficients. That
results in enforcing the grouping property by encouraging variables belonging to the same cluster
to have the same neighborhood. MGLasso exploits the multitask learning framework for GGMs
inference coupled with a convex clustering problem over the nodes to infer multiscale networks and
clusters simultaneously. To our knowledge, this is the first attempt in the literature of undirected
GGMs. MGLasso can also be seen as an extension of sparse group fused Lasso for graphical models
and be straightforwardly extended to probability distributions belonging to the exponential family
(E. Yang et al. 2012). The MGLasso algorithm is implemented in the R package mglasso available at
https://CRAN.R-project.org/package=mglasso. The remainder of this paper is organized as follows.
In Section 2 and Section 3, we formally introduce the Multiscale Graphical Lasso and its optimization
algorithm. Section 4 presents simulated and real data numerical results.

2 Multiscale Graphical Lasso

Let X = (𝑋 1, … , 𝑋𝑝)𝑇 be a 𝑝-dimensional Gaussian random vector, with mean vector 𝜇 ∈ ℝ𝑝 and
positive definite covariance matrix ∈ ℝ𝑝×𝑝. Let 𝐺 = (𝑉 , 𝐸) be a graph encoding the conditional
independence structure of the normal distribution 𝒩 (𝜇, ), where 𝑉 = {1, … 𝑝} is the set of vertices
and 𝐸 the set of edges. The graph 𝐺 is uniquely determined by the support of the precision matrix
= −1 (Dempster 1972). Specifically, for any two vertices 𝑖 ≠ 𝑗 ∈ 𝑉, the edge (𝑖, 𝑗) belongs to the set 𝐸 if
and only if Ω𝑖𝑗 ≠ 0. On the contrary, if Ω𝑖𝑗 = 0, the variables 𝑋 𝑖 and 𝑋 𝑗 are said to be independent
conditionally to the remaining variables 𝑋∖(𝑖,𝑗). We note,

𝑋 𝑖 ⟂⟂ 𝑋 𝑗|𝑋∖(𝑖,𝑗) ⇔ Ω𝑖𝑗 = 0.

Let 𝑋 = (𝑋𝑇
1, … , 𝑋𝑇

𝑛)
𝑇
be the 𝑛×𝑝-dimensional data matrix composed of 𝑛 i.i.d samples of the Gaussian

random vectorX. To perform graphical model inference, Meinshausen and Bühlmann (2006) consider
𝑝 separate linear regressions of the form:

̂𝛽𝑖(𝜆) = argmin
𝛽𝑖∈ℝ𝑝−1

1
𝑛
‖X𝑖 − X∖𝑖𝛽𝑖‖

2
2 + 𝜆 ‖𝛽𝑖‖1 , (1)

where 𝜆 is a non-negative regularization parameter, X∖𝑖 denotes the matrix X deprived of column
𝑖, 𝛽𝑖 = (𝛽 𝑖𝑗)𝑗∈{1,…,𝑝}\𝑖 is a vector of 𝑝 − 1 regression coefficients and ‖.‖1 is the ℓ1−norm. These
Lasso regularized problems estimate the neighborhoods, one variable at a time. The final edge set
estimates �̂� can be deduced from the union of the estimated neighborhoods using an AND or OR rule
(Meinshausen and Bühlmann (2006)). The MB approach is based on the central relationship between

simple linear regression and precision matrix coefficients. It can be shown that 𝛽 𝑖𝑗 = −Ω𝑖𝑗
Ω𝑖𝑖

(Lauritzen
1996).

On the other hand, let us now consider the clustering analysis of the 𝑝 variables in ℝ𝑛. The convex
clustering problem (Hocking et al. 2011; Lindsten, Ohlsson, and Ljung 2011; Pelckmans et al. 2005) is
the minimization of the quantity

1
2

𝑝
∑
𝑖=1

‖𝑋𝑖 − 𝛼𝑖‖
2
2 + 𝜆∑

𝑖<𝑗
𝑤𝑖𝑗 ‖𝛼𝑖 − 𝛼𝑗‖𝑞 (2)
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with respect to the matrix 𝛼 ∈ ℝ𝑝×𝑛, where 𝜆 is a sparsity penalization parameter, {𝑤𝑖𝑗} are symmetric
positive weights, 𝛼𝑖 ∈ ℝ𝑛 is the centroid to which 𝑋𝑖 is assigned to, and ‖.‖𝑞 is the ℓ𝑞-norm on ℝ𝑝

with 𝑞 ≥ 1. Points 𝑋𝑖 and 𝑋𝑗 are assigned to the same cluster if ̂𝛼𝑖 ≈ ̂𝛼𝑗. The regularization path of
solutions to problem in Equation 2 can be represented as a dendrogram. The path properties have
been studied in Chi and Lange (2015) and Chiquet, Gutierrez, and Rigaill (2017), among others. Note
that these approaches rely on geometric properties of matrix 𝑋, and do not require any assumption
on the distribution of the covariates.

We propose to combine the MB and convex clustering approaches. Specifically, the 𝑝 independent
Lasso regressions of the MB approach are merged into a single optimization criterion where a
convex clustering fusion penalty in ℓ2 is applied on the regression vectors considered as cluster
centers. Namely, the Multiscale Graphical Lasso (MGLasso) pseudo-likelihood problem minimizes in
a Gaussian framework the following quantity:

𝐽𝜆1,𝜆2(𝛽;X) =
1
2

𝑝
∑
𝑖=1

‖X𝑖 − X∖𝑖𝛽𝑖‖
2
2 + 𝜆1

𝑝
∑
𝑖=1

‖𝛽𝑖‖1 + 𝜆2∑
𝑖<𝑗

‖𝛽𝑖 − 𝜏𝑖𝑗𝛽
𝑗‖2 , (3)

with respect to 𝛽 ∶= [𝛽1, … , 𝛽𝑝] ∈ ℝ(𝑝−1)×𝑝,whereX𝑖 ∈ ℝ𝑛 denotes the 𝑖-th column ofX, 𝜆1 and 𝜆2 are
penalization parameters, 𝜏𝑖𝑗 ∈ ℝ(𝑝−1)×(𝑝−1) is a permutation matrix, which permutes the coefficients
in the regression vector 𝛽𝑗 such as

‖𝛽𝑖 − 𝜏𝑖𝑗𝛽
𝑗‖2 =

√
∑

𝑘∈{1,…,𝑝}\{𝑖,𝑗}
(𝛽 𝑖𝑘 − 𝛽 𝑗𝑘)2 + (𝛽 𝑖𝑗 − 𝛽 𝑗𝑖 )2,

as illustrated in Figure 1. The coefficient 𝛽 𝑖𝑘 is to be read as the multiple regression coefficients of 𝑋𝑖

on 𝑋𝑘.

The MGLasso criterion can be seen as a multitask regression problem where the set of responses
is identical to the set of predictors. The Lasso penalty term encourages sparsity in the estimated
coefficients while the group-fused term encourages fusion in the regression vectors 𝛽𝑖 and 𝛽𝑗.

Let us illustrate by an example the effect of the fusion term in the proposed approach. Two variables
𝑖 and 𝑗 are in the same group when ‖𝛽𝑖 − 𝜏𝑖𝑗𝛽

𝑗‖2 ≈ 0. Considering a cluster 𝒞 of 𝑞 variables, it is

straightforward to show that ∀(𝑖, 𝑗) ∈ 𝒞 2, we have ̂𝛽 𝑖𝑗 = 𝛽𝒞, where 𝛽𝒞 is a scalar. Thus the algorithm is
likely to produce precision matrices with blocks of constant entries for a given value of 𝜆2, each block
corresponding to a cluster. In the same vein as Park, Hastie, and Tibshirani (2006), a cluster composed
of variables that share the same coefficients can be summarized by a representative variable.

A component-wise difference between two regression vectors without reordering the coefficients
would not necesarily cluster variables which share the same neighborhood. The permutation 𝜏𝑖𝑗
reoders coefficients in such a way that differences are taken between symmetric coeffecients and
those corresponding to the same set of predictors. The model is thus likely to cluster together
variables that share the same neighboring structure and encourages symmetric graph structures.

In practice, when external information about the clustering structure is available, the problem can be
generalized into:

min
𝛽

𝑝
∑
𝑖=1

1
2
‖X𝑖 − X∖𝑖𝛽𝑖‖

2
2 + 𝜆1

𝑝
∑
𝑖=1

‖𝛽𝑖‖1 + 𝜆2∑
𝑖<𝑗

𝑤𝑖𝑗 ‖𝛽
𝑖 − 𝜏𝑖𝑗𝛽

𝑗‖2 , (4)

where 𝑤𝑖𝑗 is a positive weight. In the remainder of the paper, we will assume that 𝑤𝑖𝑗 = 1 for simplicity.
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Figure 1: Illustration of the permutation between regression coefficients in the MGLasso model.

3 Numerical scheme

This Section introduces a complete numerical scheme of the Multiscale Graphical Lasso via convex
optimization and a model selection procedure. Section 3.1 reviews the principles of the Continuation
with Nesterov smoothing in a shrinkage-thresholding algorithm (CONESTA, Hadj-Selem et al. 2018).
Section 3.2 details a reformulation of the MGLasso criterion, which eases the use of CONESTA as a
solver. Finally, Section 3.3 presents the procedure for selecting the regularization parameters.

3.1 Optimization via CONESTA algorithm

The optimization problem for Multiscale Graphical Lasso is convex but not straightforward to
solve using classical algorithms because of the fused-lasso type penalty, which is non-separable
and admits no closed-form solution for the proximal gradient. We rely on the Continuation with
Nesterov smoothing in a shrinkage-thresholding algorithm (Hadj-Selem et al. 2018) dedicated to
high-dimensional regression problems with structured sparsity, such as group structures.

The CONESTA solver, initially introduced for neuro-imaging problems, addresses a general class of
convex optimization problems that include group-wise penalties. The algorithm solves problems in
the form

minimize w. r. t. 𝜃 𝑓 (𝜃) = 𝑔(𝜃) + 𝜆1ℎ(𝜃) + 𝜆2𝑠(𝜃), (5)

where 𝜃 ∈ ℝ𝑑 and 𝜆1 and 𝜆2 are penalty parameters.

In the original paper (Hadj-Selem et al. 2018), 𝑔(𝜃) is a differentiable function, ℎ(𝜃) is a penalty
function whose proximal operator prox𝜆1ℎ is known in closed-form.

Given 𝜙 ⊆ {1, … , 𝑑}, let 𝜃𝜙 = (𝜃𝑖)𝑖∈𝜙 denote the subvector of 𝜃 referenced by the indices in 𝜙. Denote
Φ = {𝜙1, … , 𝜙Card(Φ)} a collection with 𝜙𝑖 ⊆ {1, … , 𝑑}. Let the matrix A𝜙 ∈ ℝ𝑚×Card(Φ) define a linear
map from ℝCard(𝜙) to ℝ𝑚 by sending the column vector 𝜃𝜙 ∈ ℝCard(𝜙) to the column vector A𝜙𝜃𝜙 ∈ ℝ𝑚.
The function 𝑠(𝜃) is assumed to be an ℓ1,2-norm i.e., the sum of the group-wise ℓ2-norms of the
elements A𝜙𝜃𝜙, 𝜙 ∈ Φ. Namely,

𝑠(𝜃) = ∑
𝜙∈Φ

‖A𝜙𝜃𝜙‖2.

When A𝜙 is the identity operator, the penalty function 𝑠 is the overlapping group-lasso and 𝑚 =
Card(𝜙). When it is a discrete derivative operator, 𝑠 is a total variation penalty, and 𝑚 can be seen as
the number of neighborhood relationships.

The non-smooth ℓ1,2-norm penalty can be approximated by a smooth function with known gradient
computed using Nesterov’s smoothing (Nesterov 2005b). Given a smoothness parameter 𝜇 > 0, let us
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define the smooth approximation

𝑠𝜇(𝜃) = max
𝛼∈𝒦

{𝛼𝑇A𝜃 −
𝜇
2
‖𝛼‖22} ,

where𝒦 is the cartesian product of ℓ2-unit balls,A is the vertical concatenation of the matricesA𝜙 and
𝛼 is an auxiliary variable resulting from the dual reformulation of 𝑠(𝜃). Note that lim𝜇→0 𝑠𝜇(𝜃) = 𝑠(𝜃).
A Fast Iterative Shrinkage-Thresholding Algorithm (FISTA, Beck and Teboulle 2009) step can then
be applied after computing the gradient of the smooth part i.e. 𝑔(𝜃) + 𝜆2𝑠𝜇(𝜃) of the approximated
criterion.

The main ingredient of CONESTA remains in the determination of the optimal smoothness parameter
using the duality gap, which minimizes the number of FISTA iterations for a given precision 𝜖. The
specification of 𝜇 is subject to dynamic update. A sequence of decreasing optimal smoothness
parameters is generated in order to dynamically adapt the FISTA algorithm stepsize towards 𝜖.
Namely, 𝜇𝑘 = 𝜇𝑜𝑝𝑡(𝜖𝑘). The smoothness parameter decreases as one gets closer to 𝜃⋆, the solution of
the problem defined in Equation 5. Since 𝜃⋆ is unknown; the approximation of the distance to the
minimum is achieved via the duality gap. Indeed

GAP𝜇𝑘(𝜃
𝑘) ≥ 𝑓𝜇𝑘(𝜃

𝑘) − 𝑓 (𝜃⋆) ≥ 0.

We refer the reader to the seminal paper for more details on the formulation of GAP𝜇𝑘(𝜃
𝑘). The

CONESTA routine is spelled out in the algorithm CONESTA solver where 𝐿(𝑔 + 𝜆2𝑠𝜇) is the Lipschitz
constant of ∇(𝑔 + 𝜆2𝑠𝜇), 𝑘 is the iteration counter for the inner FISTA updates and 𝑖 is the iteration
counter for CONESTA updates.

3.2 Reformulation of MGLasso for CONESTA algorithm

Using CONESTA for solving the MGLasso problem requires a reformulation in order to comply with
the form of loss function required by CONESTA. The objective of MGLasso can be written as

argmin 1
2
||Y − ̃X�̃�||22 + 𝜆1||�̃�||1 + 𝜆2∑

𝑖<𝑗
||𝐷𝑖𝑗�̃�||2, (6)

where Y = Vec(X) ∈ ℝ𝑛𝑝, �̃� = Vec(𝛽) ∈ ℝ𝑝(𝑝−1), ̃X is a ℝ[𝑛𝑝]×[𝑝×(𝑝−1)] block-diagonal matrix with X∖𝑖

on the 𝑖-th block. The matrix 𝐷𝑖𝑗 is a (𝑝 − 1) × 𝑝(𝑝 − 1) matrix chosen so that 𝐷𝑖𝑗�̃� = 𝛽𝑖 − 𝜏𝑖𝑗𝛽
𝑗.

Note that we introduce this notation for simplicity of exposition, but, in practice, the sparsity of the
matrices 𝐷𝑖𝑗 allows a more efficient implementation. Based on reformulation Equation 6, we may
apply CONESTA to solve the objective of MGLasso for fixed 𝜆1 and 𝜆2. The procedure is applied, for
fixed 𝜆1, to a range of decreasing values of 𝜆2 to obtain a hierarchical clustering. The corresponding
pseudo-code is given in the following algorithm where (X𝑖)† denotes the pseudo-inverse of X𝑖 and
𝜖𝑓 𝑢𝑠𝑒 the threshold for merging clusters. We note here that problem in Equation 6 is of the same
form as the optimization problem solved in the paper by Hadj-Selem et al. (2018): as they showed,
CONESTA outperforms other optimization approaches such as the alternating direction method of
multipliers (ADMM, Boyd et al. 2011), the excessive gap method (EGM, Nesterov 2005a), the classical
FISTA with fixed smoothing and the inexact FISTA (Schmidt, Roux, and Bach 2011). Rather than
repeating their experiments, we refer the reader to Section IV of their paper.

3.3 Model selection

A crucial question for practical applications is the definition of a rule to select the penalty parameters
(𝜆1, 𝜆2). This selection problem operates at two levels: 𝜆1 controls the sparsity of the graphical model,
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Algorithm 1 CONESTA solver

1: Inputs:
2: functions 𝑔(𝜃), ℎ(𝜃), 𝑠(𝜃)
3: precision 𝜖
4: penalty parameters 𝜆1, 𝜆2
5: decreasing factor 𝜏 ∈ (0, 1) for sequence of precisions
6: Output:
7: 𝜃𝑖+1 ∈ ℝ𝑑
8: Initializations:
9: 𝜃0 ∈ ℝ𝑑

10: 𝜖0 = 𝜏GAP𝜇=10−8(𝜃
0)

11: 𝜇0 = 𝜇𝑜𝑝𝑡(𝜖0)
12: repeat
13: 𝜖 𝑖𝜇 = 𝜖 𝑖 − 𝜇𝑖𝜆2

𝑑
2

14: ▷ FISTA
15: 𝑘 = 2 ▷ new iterator
16: 𝜃1FISTA = 𝜃0FISTA = 𝜃𝑖 ▷ Initial parameters value
17: 𝑡𝜇 =

1
𝐿(𝑔+𝜆2𝑠𝜇)

▷ Compute stepsize with 𝐿(𝑔 + 𝜆2𝑠𝜇) the Lipschitz constant of ∇(𝑔 + 𝜆2𝑠𝜇)
18: repeat
19: 𝑧 = 𝜃𝑘−1FISTA + 𝑘−2

𝑘+1 (𝜃
𝑘−1
FISTA − 𝜃𝑘−2FISTA)

20: 𝜃𝑘FISTA = prox𝜆1ℎ(𝑧 − 𝑡𝜇∇(𝑔 + 𝜆2𝑠𝜇)(𝑧))
21: until GAP𝜇(𝜃

𝑘
FISTA) ≤ 𝜖 𝑖𝜇

22: 𝜃𝑖+1 = 𝜃𝑘FISTA
23:

24: 𝜖 𝑖 = GAP𝜇=𝜇𝑖 𝜃
𝑖+1 + 𝜇𝑖𝜆2

𝑑
2

25:

26: 𝜖 𝑖+1 = 𝜏𝜖 𝑖
27:

28: 𝜇𝑖+1 = 𝜇𝑜𝑝𝑡(𝜖 𝑖+1)
29: until 𝜖 𝑖 ≤ 𝜖

and 𝜆2 controls the number of clusters in the optimal clustering partition. These two parameters are
dealt with separately: the sparsity parameter 𝜆1 is chosen via model selection, while the clustering
parameter 𝜆2 varies across a grid of values in order to obtain graphs with different levels of granularity.
The problem of model selection in graphical models is difficult in the high dimensional case where
the number of samples is small compared to the number of variables, as classical Akaike information
criterion (AIC, Akaike 1998) and Bayesian information criterion (BIC, Schwarz 1978) tend to perform
poorly (Liu, Roeder, and Wasserman 2010).

In this paper, we focus on the StARS stability selection approach proposed by Liu, Roeder, and
Wasserman (2010) as suggested by some preliminary tests where we compared the Extended BIC
(EBIC, Foygel and Drton 2010), a model selection criterion calibrated with slope heuristics (Baudry,
Maugis, and Michel 2012), the Rotation invariant criterion implemented in the Huge package (Zhao
et al. 2012), the GGMSelect procedure (Giraud, Huet, and Verzelen 2012), cross-validation (Bien and
Tibshirani 2011) and StARS. The method uses 𝑘 subsamples of data to estimate the associated graphs
for a given range of 𝜆1 values. For each value, a global instability of the graph edges is computed.
The optimal value of 𝜆1 is chosen so as to minimize the instability, as follows. Let 𝜆(1)1 , … , 𝜆(𝐾)1 be
a grid of sparsity regularization parameters, and 𝑆1, … , 𝑆𝑁 be the 𝑁 bootstrap samples obtained by
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Algorithm 2 MGLasso algorithm

1: Inputs:
2: Set of variables X = {X1, … ,X𝑝} ∈ ℝ𝑛×𝑝
3: Penalty parameters 𝜆1 ≥ 0, 𝜆2initial > 0
4: Increasing factor 𝜂 > 1 for fusion penalties 𝜆2
5: Fusion threshold 𝜖𝑓 𝑢𝑠𝑒 ≥ 0
6: Outputs: For 𝜆1 fixed and 𝜆2 from 0 to 𝜆2initial × 𝜂(𝐼 ) with 𝐼 the number of iterations:
7: Regression vectors 𝛽(𝜆1, 𝜆2) ∈ ℝ𝑝×(𝑝−1),
8: Clusters partition of variables indices in 𝐾 clusters: 𝐶(𝜆1, 𝜆2)
9: Initializations:

10: 𝛽𝑖 = (X𝑖)†X𝑖, ∀𝑖 = 1, … , 𝑝 for warm start in CONESTA solver
11: 𝐶 = {{1}, … , {𝑝}} Initial clusters with one element per cluster.
12: Set 𝜆2 = 0
13: Compute 𝛽 using CONESTA solver
14: Update clusters 𝐶 with rule described in while loop.
15: Set: 𝜆2 = 𝜆2initial
16: ▷ Clustering path
17: while Card(𝐶) > 1 do
18: Compute 𝛽 using CONESTA solver with warm start from previous iteration
19: ▷ Clusters update
20: Compute pairwises distances 𝑑(𝑖, 𝑗) = ‖𝛽𝑖 − 𝜏𝑖𝑗𝛽

𝑗‖2, ∀𝑖, 𝑗 ∈ {1, … , 𝑝}
21:

22: Determine clusters 𝐶𝑘(𝑘 = 1, … , 𝐾) with the rule (𝑖, 𝑗) ∈ 𝐶𝑘 iff. 𝑑(𝑖, 𝑗) ≤ 𝜖𝑓 𝑢𝑠𝑒
23: 𝜆2 = 𝜆2 × 𝜈
24: end while

sampling the rows of the data set X. For each 𝑘 ∈ {1, … , 𝐾} and for each 𝑗 ∈ {1, … , 𝑁 }, we denote by
𝒜 𝑘,𝑗(X) the adjacency matrix of the estimated graph obtained by applying the inference algorithm
to 𝑆𝑛 with regularization parameter 𝜆(𝑘)1 . For each possible edge (𝑠, 𝑡) ∈ {1, … , 𝑝}2, the probability of
edge appearance is estimated empirically by

̂𝜃(𝑘)𝑠𝑡 = 1
𝑁

𝑁
∑
𝑗=1

𝒜 𝑘,𝑗
𝑠𝑡 .

Define
̂𝜉𝑠𝑡(Λ) = 2 ̂𝜃𝑠𝑡(Λ) (1 − ̂𝜃𝑠𝑡(Λ))

̂𝜉𝑠𝑡(𝜆
(𝑘)
1 ) = 2 ̂𝜃(𝑘)𝑠𝑡 (1 − ̂𝜃(𝑘)𝑠𝑡 )

the empirical instability of edge (𝑠, 𝑡) (that is, twice the variance of the Bernoulli indicator of edge
(𝑠, 𝑡)). The instability level associated with 𝜆(𝑘)1 is given by

�̂�(𝜆(𝑘)1 ) =
∑𝑠<𝑡

̂𝜉𝑠𝑡(𝜆
(𝑘)
1 )

(𝑝2)
.

StARS selects the optimal penalty parameter as follows

�̂� = max
𝑘

{𝜆(𝑘)1 ∶ �̂�(𝜆(𝑘)1 ) ≤ 𝜐, 𝑘 ∈ {1, … , 𝐾}} ,

where 𝜐 is the threshold chosen for the instability level.
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4 Simulation experiments

In this Section, we conduct a simulation study to evaluate the performance of the MGLasso method,
both in terms of clustering and support recovery. Receiver Operating Characteristic (ROC) curves
are used to evaluate the adequacy of the inferred graphs with the ground truth for the MGLasso and
GLasso in its neighborhood selection version in the Erdös-Rényi (Erdős, Rényi, et al. 1960), Scale-free
(Newman, Strogatz, and Watts 2001), and Stochastic Block Models (SBM, Fienberg and Wasserman
1981) frameworks. The Adjusted Rand indices are used to compare the partitions obtained with
MGLasso, hierarchical agglomerative clustering, and K-means clustering in a stochastic block model
framework.

4.1 Synthetic data models

We consider three different synthetic network models: the Stochastic Block Model (Fienberg and
Wasserman 1981), the Erdös-Renyi model (Erdős, Rényi, et al. 1960) and the Scale-Free model (New-
man, Strogatz, and Watts 2001). In each case, Gaussian data is generated by drawing 𝑛 independent
realizations of a multivariate Gaussian distribution 𝒩 (0, ) where ∈ ℝ𝑝×𝑝 and = −1. The support
of , equivalent to the network adjacency matrix, is generated from the three different models. The
difficulty level of the problem is controlled by varying the ratio 𝑛

𝑝 with 𝑝 fixed at 40: 𝑛
𝑝 ∈ {0.5, 1, 2}.

4.1.1 Stochastic Block Model

We construct a block-diagonal precision matrix as follows. First, we generate the support of as
shown in Figure 2, denoted by 𝐴 ∈ {0, 1}𝑝×𝑝. To do this, the variables are first partitioned into 𝐾 = 5
hidden groups, noted 𝐶1, … , 𝐶𝐾 described by a latent random variable 𝑍𝑖, such that 𝑍𝑖 = 𝑘 if 𝑖 = 𝐶𝑘. 𝑍𝑖
follows a multinomial distribution

𝑃(𝑍𝑖 = 𝑘) = 𝜋𝑘, ∀𝑘 ∈ {1, … , 𝐾},

where 𝜋 = (𝜋1, … , 𝜋𝑘) is the vector of proportions of clusters whose sum is equal to one. The set of
latent variables is noted Z = {𝑍1, … , 𝑍𝐾}. Conditionally to Z, 𝐴𝑖𝑗 follows a Bernoulli distribution such
that

𝐴𝑖𝑗|𝑍𝑖 = 𝑘, 𝑍𝑗 = 𝑙 ∼ ℬ(𝛼𝑘𝑙), ∀𝑘, 𝑙 ∈ {1, … , 𝐾},

where 𝛼𝑘𝑙 is the probability of inter-cluster connectivity, with 𝛼𝑘𝑙 = 0.01 if 𝑘 ≠ 𝑙 and 𝛼𝑙 𝑙 = 0, 75. For
𝑘 ∈ {1, … , 𝐾}, we define 𝑝𝑘 = ∑𝑝

𝑖=1 1{𝑍𝑖=𝑘}. The precision matrix of the graph is then calculated as
follows. We define Ω𝑖𝑗 = 0 if 𝑍𝑖 ≠ 𝑍𝑗 ; otherwise, we define Ω𝑖𝑗 = 𝐴𝑖𝑗𝜔𝑖𝑗 where, for all 𝑖 ∈ {1, … , 𝑝} and
for all 𝑗 ∈ {1, … , 𝑝|𝑍𝑗 = 𝑍𝑖}, 𝜔𝑖𝑗 is given by :

𝜔𝑖𝑖 ∶=
1 + 𝜌(𝑝𝑍𝑖 − 2)

1 + 𝜌(𝑝𝑍𝑖 − 2) − 𝜌2(𝑝𝑍𝑖 − 1)
;

𝜔𝑖𝑗 ∶=
−𝜌

1 + 𝜌(𝑝𝑍𝑖 − 2) − 𝜌2(𝑝𝑍𝑖 − 1)
.

If 𝛼𝑙 𝑙 were to be equal to one, this construction of would make it possible to control the level of
correlation between the variables in each block to 𝜌. Introducing a more realistic scheme with
𝛼𝑙 𝑙 = 0.75 allows only to have an approximate control.

library(mglasso)
set.seed(2020)
sim_sbm <- sim_data(

10



p = 40,
structure = "block_diagonal",
alpha = rep(1 / 5, 5),
prob_mat = diag(0.75, 5),
rho = 0.2,
inter_cluster_edge_prob = 0.01

)
gsbm <- adj_mat(sim_sbm$graph)
Matrix::image(

as(gsbm, "sparseMatrix"),
sub = "",
xlab = "",
ylab = ""

)

10

20

30

10 20 30

Figure 2: Adjacency matrix of a stochastic block model defined by 𝐾 = 5 classes with identical
prior probabilities set to 𝜋 = 1/𝐾, inter-classes connection probability 𝛼𝑘𝑙 = 0.01, 𝑘 ≠ 𝑙, intra-classes
connection probability 𝛼𝑙 𝑙 = 0.75 and 𝑝 = 40 vertices.

4.1.2 Erdös-Renyi Model

The Erdös-Renyi model is a special case of the stochastic block model where 𝛼𝑘𝑙 = 𝛼𝑙 𝑙 = 𝛼 is constant.
We set the density 𝛼 of the graph to 0.1; see Figure 3 for an example of the graph resulting from this
model.

set.seed(2022)
sim_erdos <- sim_data(p = 40, structure = "erdos", p_erdos = 0.1)
gerdos <- adj_mat(sim_erdos$graph)
Matrix::image(as(gerdos, "sparseMatrix"), sub = "", xlab = "", ylab = "")
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Figure 3: Adjacency matrix of an Erdös-Renyi model with probability of connection 𝛼 = 0.1 and
𝑝 = 40 vertices.

4.1.3 Scale-free Model

The Scale-free Model generates networks whose degree distributions follow a power law. The graph
starts with an initial chain graph of 2 nodes. Then, new nodes are added to the graph one by one.
Each new node is connected to an existing node with a probability proportional to the degree of the
existing node. We set the number of edges in the graph to 40. An example of scale-free graph is
shown in Figure 4.

set.seed(2022)
sim_sfree <- sim_data(p = 40, structure = "scale_free")
gsfree <- adj_mat(sim_sfree$graph)
Matrix::image(as(gsfree, "sparseMatrix"), sub = "", xlab = "", ylab = "")
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Figure 4: Adjacency matrix of a Scale-free model with 40 edges and 𝑝 = 40 nodes.

4.2 Support recovery

We compare the network structure learning performance of our approach to that of GLasso in its
neighborhood selection version using ROC curves. In both GLasso and MGLasso, the sparsity is
controlled by a regularization parameter 𝜆1; however, MGLasso admits an additional regularization
parameter, 𝜆2, which controls the strength of convex clustering. To compare the two methods, in
each ROC curve, we vary the parameter 𝜆1 while the parameter 𝜆2 (for MGLasso) is kept constant.
We computed ROC curves for 4 different penalty levels for the 𝜆2 parameter; since GLasso does not
depend on 𝜆2, the GLasso ROC curves are replicated.

In a decision rule associated with a sparsity penalty level 𝜆1, we recall the definition of the two
following functions. The true positive rate is given by 𝑇𝑃(𝜆1)

𝑇𝑃(𝜆1)+𝐹𝑁 (𝜆1)
. The false positive rate is defined

as follows 1− 𝑇𝑁 (𝜆1)
𝑇𝑁 (𝜆1)+𝐹𝑃(𝜆1)

, where 𝑇𝑃 is the number of true positives, 𝑇𝑁 the number of true negatives,
𝐹𝑁 the number of false negatives and 𝐹𝑃 the number of false positives. The ROC curve represents
the true positive rate as a function of the false positive rate. For a given level of true positive rate,
the best method minimizes the false positive rate.

For each configuration (𝑛, 𝑝 fixed), we generate 50 replications and their associated ROC curves,
which are then averaged. The average ROC curves for the three models are given in Figure 5, Figure 6
and Figure 7 by varying 𝑛

𝑝 ∈ {0.5, 1, 2}.

library(ggplot2)
library(ghibli)
load("./data/roc_dtf_erdos.RData")
np.labs <- c("frac(n, p) == 0.5", "frac(n, p) == 1", "frac(n, p) == 2")
names(np.labs) <- c("0.5", "1", "2")
tv.labs <- c("lambda[2] == 0", "lambda[2] == 3.33", "lambda[2] == 10")
names(tv.labs) <- c("0", "3.33", "10")
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roc_dtf_erdos <- dplyr::filter(roc_dtf_erdos, tv != 6.67)
ggplot(roc_dtf_erdos, aes(

x = 100 * fpr,
y = 100 * tpr,
color = method

)) +
geom_line(linewidth = 0.7) +
facet_grid(np ~ tv, labeller = labeller(

np = as_labeller(np.labs, label_parsed),
tv = as_labeller(tv.labs, label_parsed)

)) +
geom_abline(

intercept = 0,
slope = 1,
linetype = "dashed",
color = "grey"

) +
xlab("False Positive Rate") +
ylab("True Positive Rate") +
ggtitle("") +
scale_colour_manual(

name = "Method",
labels = c("GLasso", "MGLasso"),
values = ghibli::ghibli_palette("MarnieMedium1")[5:6]

)

14



λ2 = 0 λ2 = 3.33 λ2 = 10

np
=

0.5
np

=
1

np
=

2

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0
25
50
75

100

0
25
50
75

100

0
25
50
75

100

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Method

GLasso

MGLasso

Figure 5: Mean ROC curves for MGLasso and GLasso graph inference in the Erdös-Renyi model. We
varied the fusion penalty parameter of MGLasso 𝜆2 ∈ {0, 3.33, 10} alongside the ratio 𝑛

𝑝 ∈ {0.5, 1, 2}.
Within each panel, the ROC curve shows the True positive rate (y-axis) vs. the False positive rate
(x-axis) for both MGLasso (blue) and GLasso (brown). Since GLasso does not have a fusion penalty,
its ROC curves were replicated for panels belonging to the same row. We also plot the random
classifier (dotted grey line). The results have been averaged over 50 simulated datasets and suggest
that MGLasso performs no worse than GLasso. For 𝜆2 = 0, the MGLasso approach is equivalent to
GLasso in its neighborhood selection version.

load("./data/roc_dtf_sfree.RData")
np.labs <- c("frac(n, p) == 0.5", "frac(n, p) == 1", "frac(n, p) == 2")
names(np.labs) <- c("0.5", "1", "2")
tv.labs <- c("lambda[2] == 0", "lambda[2] == 3.33", "lambda[2] == 10")
names(tv.labs) <- c("0", "3.33", "10")
roc_dtf_sfree <- dplyr::filter(roc_dtf_sfree, tv != 6.67)
ggplot(roc_dtf_sfree, aes(

x = 100 * fpr,
y = 100 * tpr,
color = method

)) +
geom_line() +
facet_grid(np ~ tv, labeller = labeller(

np = as_labeller(np.labs, label_parsed),
tv = as_labeller(tv.labs, label_parsed)

)) +
geom_abline(

intercept = 0,
slope = 1,
linetype = "dashed",
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color = "grey"
) +
xlab("False Positive Rate") +
ylab("True Positive Rate") +
ggtitle("") +
scale_colour_manual(

name = "Method",
labels = c("GLasso", "MGLasso"),
values = ghibli_palette("MarnieMedium1")[5:6]

)
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Figure 6: Mean ROC curves for MGLasso and GLasso graph inference in the Scale-free model. We
varied the fusion penalty parameter of MGLasso 𝜆2 ∈ {0, 3.33, 10} alongside the ratio 𝑛

𝑝 ∈ {0.5, 1, 2}.
Within each panel, the ROC curve shows the True positive rate (y-axis) vs. the False positive rate
(x-axis) for both MGLasso (blue) and GLasso (brown). Since GLasso does not have a fusion penalty,
its ROC curves were replicated for panels belonging to the same row. We also plot the random
classifier (dotted grey line). The results have been averaged over 50 simulated datasets and suggest
that MGLasso performs no worse than GLasso. For 𝜆2 = 0, the MGLasso approach is equivalent to
Glasso in its neighborhood selection version.

load("./data/roc_dtf_sbm.RData")
np.labs <- c("frac(n, p) == 0.5", "frac(n, p) == 1", "frac(n, p) == 2")
names(np.labs) <- c("0.5", "1", "2")
tv.labs <- c("lambda[2] == 0", "lambda[2] == 3.33", "lambda[2] == 10")
names(tv.labs) <- c("0", "3.33", "10")
roc_dtf_sbm <- dplyr::filter(roc_dtf_sbm, tv != 6.67)
ggplot(roc_dtf_sbm, aes(

x = 100 * fpr,

16



y = 100 * tpr,
color = method

)) +
geom_line() +
facet_grid(np ~ tv, labeller = labeller(

np = as_labeller(np.labs, label_parsed),
tv = as_labeller(tv.labs, label_parsed)

)) +
geom_abline(

intercept = 0,
slope = 1,
linetype = "dashed",
color = "grey"

) +
xlab("False Positive Rate") +
ylab("True Positive Rate") +
ggtitle("") +
scale_colour_manual(

name = "Method",
labels = c("GLasso", "MGLasso"),
values = ghibli_palette("MarnieMedium1")[5:6]

)
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Figure 7: Mean ROC curves for MGLasso and GLasso graph inference in the stochastic block model.
We varied the fusion penalty parameter of MGLasso 𝜆2 ∈ {0, 3.33, 10} alongside the ratio 𝑛

𝑝 ∈ {0.5, 1, 2}.
Within each panel, the ROC curve shows the True positive rate (y-axis) vs. the False positive rate
(x-axis) for both MGLasso (blue) and GLasso (brown). Since GLasso does not have a fusion penalty,
its ROC curves were replicated for panels belonging to the same row. We also plot the random
classifier (dotted grey line). The results have been averaged over 50 simulated datasets and suggest
that MGLasso performs no worse than GLasso. For 𝜆2 = 0, the MGLasso approach is equivalent to
Glasso in its neighborhood selection version.

Based on these empirical results, we first observe that, in all the considered simulation models,
MGLasso improves over GLasso in terms of support recovery in the high-dimensional setting where
𝑝 < 𝑛. In addition, in the absence of a fusion penalty, i.e., 𝜆2 = 0, MGLasso performs no worse
than GLasso in each of the 3 models. However, for 𝜆2 > 0, increasing penalty value does not
seem to significantly improve the support recovery performances for the MGLasso, as we observe
similar results for 𝜆2 = 3.3, 10. Preliminary analyses show that, as 𝜆2 increases, the estimates of the
regression vectors are shrunk towards 0. This shrinkage effect of group-fused penalty terms was also
observed in (Chu et al. 2021). Note that the performance of the MGLasso deteriorates comparatively
to GLasso when the inter-clusters edge connection probability of the stochastic block model is high.

4.3 Clustering

In order to study clustering performance, we compared the partitions estimated by MGLasso, Hierar-
chical Agglomerative Clustering (HAC) with Ward’s distance and K-means to the true partition in a
stochastic block model framework. Euclidean distances between variables are used for HAC and
K-means. The criterion used for the comparison is the adjusted Rand index (ARI). We studied the
influence of the correlation level inside clusters on the clustering performances through two different
parameters: 𝜌 ∈ {0.1, 0.3}; the vector of cluster proportions is fixed at = (1/5, … , 1/5). Hundred
Gaussian data sets were then simulated for each configuration (𝜌, 𝑛/𝑝 fixed).The optimal sparsity
penalty for MGLasso was chosen by the Stability Approach to Regularization Selection (StARS)
method (Liu, Roeder, and Wasserman 2010). In practice, we estimated a stability-like parameter in a
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sample of graphs simulated via the stochastic block model. This estimation of edge variability was
then used as the threshold for the StARS method. The parameter 𝜆2 has been varied.

load("./data/rand_dt_lower_cor_sbm.RData")
plot_res(

dt_rand,
crit_ = "rand",
ncluster_ = c(5, 10, 15, 20),
cor_ = 0.25,
np_ = c(0.5, 1, 2),
main = ""

)
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Figure 8: Boxplots of Adjusted Rand Indices for the stochastic block model with 5 classes and
𝑝 = 40 variables for a correlation level 𝜌 = 0.1. The number of estimated clusters {5, 10, 15, 20} vary
alongside the ratio 𝑛

𝑝 ∈ {0.5, 1, 2}. Within each panel, the boxplots of ARI between true partition
(with 5 classes) and estimated clustering partitions on 100 simulated datasets for 𝑘-means (blue),
hierarchical agglomerative clustering (yellow), and MGLasso (brown) methods are plotted against
the ratio 𝑛

𝑝 . The cluster assignments of MGLasso are computed from a distance between estimated
regression vectors for a given value of 𝜆2. Missing boxplots for MGLasso thus mean computed
partitions in the grid of values of 𝜆2 do not yield the fixed number of clusters. The higher the ARI
values, the better the estimated clustering partition is.

load("./data/rand_dt_higher_cor_sbm.RData")
plot_res(

dt_rand,
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crit_ = "rand",
ncluster_ = c(5, 10, 15, 20),
cor_ = 0.95,
np_ = c(0.5, 1, 2),
main = ""

)
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Figure 9: Boxplots of Adjusted Rand Indices for the stochastic block model with 5 classes and
𝑝 = 40 variables for a correlation level 𝜌 = 0.3. The number of estimated clusters {5, 10, 15, 20} vary
alongside the ratio 𝑛

𝑝 ∈ {0.5, 1, 2}. Within each panel, the boxplots of ARI between true partition
(with 5 classes) and estimated clustering partitions on 100 simulated datasets for 𝑘-means (blue),
hierarchical agglomerative clustering (yellow), and MGLasso (brown) methods are plotted against
the ratio 𝑛

𝑝 . The cluster assignments of MGLasso are computed from a distance between estimated
regression vectors for a given value of 𝜆2. The higher the ARI values, the better the estimated
clustering partition is.

The expected empirical evidence that MGLasso would work reasonably well for strongly correlated
variables is somehow highlighted in Figure 8 and Figure 9. The performances of MGLasso slightly
improve when going from Figure 8 to Figure 9, which corresponds to correlation levels of 0.1 and
0.3 between variables belonging to the same block, respectively. We observe the same trend for the
HAC and the k-means. Compared to these two approaches, the MGLasso presents the lowest values
of adjusted Rand indices, thus suggesting a lower quality of clustering. It should be noted that the
performance of MGLasso can be sensitive to the selection of the Lasso penalty parameter and the
threshold fixed to determine clusters’ fusion. In practice, this fusion threshold is varied in a grid of
values close to zero and lower than 10−3. The value leading to the maximum number of intermediate
clusters in the clustering path is chosen. Using non-trivial weights could also improve the overall
performance of MGLasso.
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During the revision of this paper, an interesting question was raised regarding the behavior of the
algorithm in a phylogenetic-based model. To investigate this, extensive numerical experiments
were conducted on a phylogenetic-based model that evaluates only clustering performances. The
results showed that the MGLASSO algorithm’s performance improves, and the method performs as
well as some state-of-the-art clustering approaches, including vanilla convex clustering and spectral
clustering. In phylogenetic-based models, adjusted Rand indices can be computed between the
estimated partition with 𝑘 clusters and the true partition in 𝑘 clusters computed from the tree used for
the simulation procedure. This differs from the clustering performance evaluation scheme applied in
the stochastic block model, where the true partition is considered fixed.

5 Applications

To illustrate the proposed simultaneous graphs and clusters inference approach, we present analyses
where the MGLasso model is applied to microbial association data for the study of multiscale
networks between operational taxonomic units and to transcriptomic and methylation genotypes for
multi-omics data integration.

5.1 Application to microbial associations in gut data

We analyze microbial associations in human gut microbiome data acquired from the round 1 of the
American Gut Project (AGP, McDonald et al. (2018)) for 𝑝 = 127 operational taxonomic units (OTUs)
and 𝑛 = 289 individuals samples. The count of microbial OTUs is an indicator of the abundance
of underlying microbial populations. Here, we investigate the network and clustering structures
of the OTUs for different levels of granularity on the processed data included in the SpiecEasi R
package (see Kurtz (2015) for details). The data is first normalized to have a unit-sum per sample and
to remove biases. Then, a centered log-ratio (clr, Aitchison 1982) transformation with an added unit
pseudo-count is applied to come back to an unconstrained Euclidean space. For fitting the MGLasso
model, we select the Lasso penalty parameter 𝜆1 via the StARS approach with threshold 𝜐 = 0.05
and vary the fusion penalty 𝜆2 in the interval [0, 20] with irregular steps. The CPU time taken for 20
values of 𝜆2 is about 8 hours with parallel evaluations on a computation cluster with as many cores
as 𝜆2 values. The maximal number of iterations is set to 10000 and the solver precision to 0.01.

We finally illustrate our new method of inferring the multiscale Gaussian graphical model, with an
application to the analysis of microbial associations in the American Gut Project. The data used
are count data that have been previously normalized by applying the log-centered ratio technique
as used in (Kurtz 2015). After some filtering steps (Kurtz 2015) on the operational taxonomic units
(OTUs) counts (removed if present in less than 37% of the samples) and the samples (removed if
sequencing depth below 2700), the top OTUs are grouped in a dataset composed of 𝑛 = 289 for 127
OTUs. As a preliminary analysis, we perform a hierarchical agglomerative clustering (HAC) on the
OTUs, which allows us to identify four significant groups. The correlation matrix of the dataset is
given in fig-emp-cor; variables have been rearranged according to the HAC partition.

Using these settings, we compute a clustering path of the solutions and estimated graphs for 5 values
of 𝜆2 corresponding to 5 different clusters partitions. The Figure 10 shows how the predicted �̂�
evolves through 𝜆2. The �̂� are computed from estimated centroids �̂� and projected onto two principal
components of the original data. The path is not always agglomerative, but the clusters’ splits
observed ensure optimal solutions.

The Figure 11 displays graphs and clusters for different levels of granularity: 127, 63, 31, 15 and
2 clusters. For computing the clusters’ assignment of nodes, the fusion threshold has been set to
𝜖𝑓 𝑢𝑠𝑒 = 0.001. Variables that belong to the same cluster share the same neighborhood; thus, the
neighboring information is summarized into a single variable representative of the group. The
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Figure 10: Clustering path of the MGLasso convex clustering solutions on microbiome data with 127
OTUs. The predicted data are projected onto the two principal components of the original data, while
the fusion penalty varies. As 𝜆2 increases, it reaches a value for which all the estimated centroids are
equal; thus, the branches of the path converge to a unique point in the center of the graph. OTUs are
colored according to their phylum classification. The path displays abrupt merges. The pure cluster
on the graph’s left side (down) corresponds to the phylum Bacteroidetes.
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subfigures show graphs at multiple levels of granularity which are built on the meta-variables or
representative variables.

To assess the relevance of the inferred clusters, they are compared to known taxonomic ranks
(phylum, class, order, family, genera, or species). The phylum classification is used. For example,
for a clustering partition in 2 groups, the MGLasso clustering partition is composed of 120 variables
versus 7 variables. The cluster 2 is exclusively composed of OTUs belonging to the Proteobacteria
phylum. The cluster 1 also contains Proteobacteria OTUs, so those identified in cluster 2 might share
more intimate characteristics.

taxonomic.classification
clusters Actinobacteria Bacteroidetes Firmicutes Proteobacteria Tenericutes Verrucomicrobia
1 2 27 76 13 1 1
2 0 0 0 7 0 0

Adjusted Rand indices are not calculated for comparisons as the unitary weights in the convex
clustering problem can be suboptimal. The abundance of OTUs belonging to cluster 1, mainly
composed of Bacteroidetes and Firmicutes phyla, is seemingly dependent on the abundance of OTUS
in cluster 2, i.e., Proteobacteria phylum.

5.2 Application to methylation and transcriptomic genotypes in poplar

Next, we investigate interactions between European poplar genotypes for transcriptomic and DNA
methylation data extracted from the Evolutionary and functional impact of EPIgenetic variation in
forest TREEs project (EPITREE, Maury et al. 2019). The analysis was purposefully applied to the
samples and not the genes in order to highlight the MGLasso clustering performance and show some
potential relationships between DNA methylation and gene expression levels for some genotypes.

Poplar (Populus) is often used as a model tree for the study of drought response. Natural populations
of black poplars (Populus nigra) have been planted in common gardens in France, Italy, and Germany
(see Figure 13) with control on some environmental variables such as water availability (Sow et al.
2018). The poplar has economic importance and is one of the most endangered species as a result
of global climate change. The drought response can be studied via DNA methylation, which is a
necessary process in plant development and response to environmental variations (Amaral et al.
2020). It consists of the addition of a Methyl group to a cytosine (C) in the genome and occurs in
three contexts (CG, CHG, and CHH, where H ∈ {𝐴, 𝐶, 𝑇 }). Methylation can be measured on two
regions of the gene. Methylation in promoters is linked to gene silencing, and methylation in the
body of the gene can be related to tissue-specific expression or alternative splicing (Sow 2019).

The collected DNAmethylation and expression data are counts data. Details on the plant material and
experimental design can be found in Sow (2019) and Chateigner et al. (2020). The transcriptomic data
were measured via RNA-Seq and normalized using Trimmed Mean of M-Values combined with a Best
linear unbiased predictor (BLUP) correction as described in Chateigner et al. (2020). The methylation
data were measured through whole-genome bisulfite sequencing (WGBS) and are normalized via
the read per density approach then passed to a logarithm function 𝑙𝑜𝑔2(𝑥 + 1) with 𝑥 ∈ ℝ. For each
one of the 10 populations (see Figure 13), DNA methylation in CG, CHG, and CHH contexts for
promoters and gene-body and RNA sequencing data are observed on genotypes. A mean measure is
computed from two replicates per population. The analysis has been restricted to a set of 151 target
genes which explains the most variability in the omics data and the subsequent number of samples
from different omic variables, which is 70.

The MGLasso model is fitted with fusion penalty values chosen in [0, 30.94] and a Lasso penalty 𝜆1
parameter chosen via the StARS approach with threshold 0.05. In the resulting clustering path (see
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(a) 127 clusters graph

326792

348374

181016

191687

305760182054

9753

188518

189396

90487

246752

512309

352304

191306

191541

191547

248140

469991

162651

175617

119010

177918

165261

190597

302160

288710

369164

531978

212619

9715

86468

174012

190307

188900

188236

9808

268332

71543

311477

195926

177772

158660

302025

363302

179460

65355

176115

190464

175137

307981

288134

322235

196731

301645

329096

334393

469709

292134

524245

293896

184983

364563

194745

Rank2

p__Bacteroidetes

p__Firmicutes

p__Proteobacteria

(b) Meta-variables graph with 63 clusters
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(c) Meta-variables graph with 31 clusters
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Figure 11: Estimated graphs at multiple levels of granularity. The first graph shows a network
inferred when 𝜆2 = 0.The number of clusters is equal to the number of OTUs. Increasing the fusion
penalty makes it possible to uncover graphs built on the representative variable of each cluster. OTUs
are colored according to their phylum taxonomic classifier. The number of clusters is computed from
the regression vectors with a fixed fusion threshold.
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Figure 12: Black poplar (C. Fischer Wikimedia)

Figure 13:
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Figure 14), we can identify three distinct and coherent clusters, which are samples corresponding to
gene expression genotypes, gene-body methylation samples, and gene promoter samples.
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Figure 14: Clustering path of solutions on DNA methylation and transcriptomic samples. The figure
shows 3 distinct clusters which correspond to omics data of different natures: transcriptomic (right),
methylation on the promoter (bottom), and methylation on gene-body (top left).

The results of the MGLasso can also be represented in the expanded way where meta-variables are
not computed from clusters. In Figure 15, a focus is put on the effect of the fusion penalty. Clusters
partitions are not presented. The higher the fusion penalty, variables are encouraged to share the
same neighborhood structure. Note that an equivalent graph over meta-variables can be computed
after choosing a fusion threshold as in Figure 11.

6 Conclusion

We proposed a new technique that combines Gaussian Graphical Model inference and hierarchical
clustering called MGLasso. The method proceeds via convex optimization and minimizes the neigh-
borhood selection objective penalized by a hybrid regularization combining a sparsity-inducing norm
and a convex clustering penalty. We developed a complete numerical scheme to apply MGLasso
in practice, with an optimization algorithm based on CONESTA and a model selection procedure.
Our simulations results over synthetic and real datasets showed that MGLasso can perform better
than GLasso in network support recovery in the presence of groups of correlated variables, and we
illustrated the method with the analysis of microbial associations data and methylation mixed with
transcriptomic data. The present work paves the way for future improvements: first, by incorporating
prior knowledge through more flexible weighted regularization; second, by studying the theoretical
properties of the method in terms of statistical guarantees for the MGLasso estimator. Moreover,
the node-wise regression approach on which our method is based can be extended to a broader
family of non-Gaussian distributions belonging to the exponential family as outlined by E. Yang et al.
(2012). Our MGLasso approach can be easily extended to non-Gaussian distributions belonging to
the exponential family and mixed graphical models.
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(c) Full graph with 𝜆2 = 3.26
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Figure 15: Adjacency matrices for different fusion penalty parameters. The first graph shows the
inferred network when no fusion penalty is added to the model. In that graph, the first block of
size 10 × 10 variables corresponds to RNA-Seq samples. The second sparser block of size 30 × 30
corresponds to gene-body DNA methylation data in the three methylation contexts. The last sparse
block of the same size corresponds to promoter methylation. The edge bands suggest a relationship
between DNA methylation measurements that belong to the same context. For example, the Loire
methylation sample in the CpG context is likely related to the Loire samples in the CHG and CHH
contexts. The graphs also suggest some relationships between expression and methylation for
some natural populations. As the merging penalty increases, the blocks corresponding to the three
methylation contexts merge first, then follow the upper left block corresponding to the expression
data. For 𝜆2 = 30.94, all natural populations merge into a single cluster and complete graph.
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Appendix

The scripts to reproduce the simulations are available at https://github.com/computorg/published-
202306-sanou-multiscale_glasso/tree/main/scripts/simulation-experiments.
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