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Abstract

Random Forests (RF) (Breiman 2001) are very popular machine learning methods. They
perform well even with little or no tuning, and have some theoretical guarantees, especially
for sparse problems (Biau 2012; Scornet, Biau, and Vert 2015). These learning strategies have
been used in several contexts, also outside the field of classification and regression. To perform
Bayesian model selection in the case of intractable likelihoods, the ABC Random Forests (ABC-RF)
strategy of Pudlo et al. (2016) consists in applying Random Forests on training sets composed
of simulations coming from the Bayesian generative models. The ABC-RF technique is based
on an underlying RF for which the training and prediction phases are separated. The training
phase does not take into account the data to be predicted. This seems to be suboptimal as in the
ABC framework only one observation is of interest for the prediction. In this paper, we study
tree-based methods that are built to predict a specific instance in a classification setting. This
type of methods falls within the scope of local (lazy/instance-based/case specific) classification
learning. We review some existing strategies and propose two new ones. The first consists in
modifying the tree splitting rule by using kernels, the second in using a first RF to compute some
local variable importance that is used to train a second, more local, RF. Unfortunately, these
approaches, although interesting, do not provide conclusive results.
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1 Introduction

The machine learning field of local/lazy/instance-based/case-specific learning (Aha, Kibler, and
Albert 1991) aims at taking into account a particular instance 𝑥∗ to produce a prediction thanks to its
similarity to the training data set. It is opposed to eager learning, where the prediction is divided in
two parts: a training phase where a global model is fitted and then a prediction phase. The local
approach, in contrast, fits a model taking into account the information provided by 𝑥∗.

Two closely related learning fields need to be mentioned: semi-supervised learning (Chapelle,
Schölkopf, and Zien 2010) and transductive learning (Gammerman, Vovk, and Vapnik 1998). Semi-
supervised learning introduces unlabeled data (whose response is unknown) in addition to labeled
ones to build a general model within the training phase. Then, in the testing phase this model is used
to predict the response value of a new unlabeled data (different from the first ones). Transductive
learning takes profit of a set of labeled and unlabelled data to avoid the construction of a general
model and directly predicts the response values of those same unlabeled data. To our knowledge,
semi-supervised and transductive learning require a high number of test/unlabeled instances. In our
case only one is provided, making those approaches unsuitable.

The main drawback of local learning approaches is their high computational cost, because for each
new test data a model has to be constructed. However, it can be very useful in domains where only
one test instance is provided.

Approximate Bayesian computation (ABC, Tavaré et al. (1997); Pritchard et al. (1999)) is a statistical
method developed for frameworks where the likelihood is intractable. It relies on simulations
according to Bayesian hierarchical models to generate pseudo-data. These artificial data are then
compared to the test/observed one. To this effect , the most basic algorithm is based on nearest
neighbors (NN). Recently, Breiman (2001)’s machine learning algorithm of random forests (RF) proved
to bring a meaningful improvement to the ABC paradigm in both a context of model choice (Pudlo et
al. 2016) and parameter inference (Raynal et al. 2019). Here, we focus on the model choice problem
and thus the classification setting. Unlike some ABC techniques that take advantage of local methods,
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such as local adjustment (Beaumont, Zhang, and Balding 2002; Blum and François 2010; Blum et
al. 2013), ABC-RF trains an eager RF to predict, later on, the observed data. It seems sub-optimal
because in the ABC framework only the observed data is of interest for prediction. The ABC-RF
strategy might therefore greatly benefit from local versions of RF.

Here, we focus on reviewing and proposing tree-based method to predict at best a specific data
of interest. We start with some reminders on Breiman (2001)’s RF algorithm. We then study local
tree-based approaches depending on the way the localization process is performed. In Section 3, we
introduce internal modifications of the RF concerning the splitting rule. Then, we take an interest
on modifying the random aspects of RF to turn them into local ones. We focus on modifying the
sampling of individuals in Section 4, and the sampling of predictors in Section 5. Local weighting of
votes is finally presented in Section 6. We empirically compare these strategies with the original,
eager one in four examples where a local approach might be of interest.

2 Reminders on Breiman’s random forest

In the following we consider a classification problem. We use a set of 𝑑 explanatory variables
𝑋 = (𝑋1, … , 𝑋𝑑) to predict the categorical/discrete response 𝑌 belonging to {1, … , 𝐾}..

The training data set is composed of 𝑁 realizations {(𝑦 (𝑖), 𝑥(𝑖))}𝑖=1,…,𝑁. We consider Breiman (2001)’s
random forest as the reference method to improve.

An RF is a set of randomized trees (L. Breiman et al. 1984), each one partitioning the covariates space
thanks to a series of allocation rules and assigning a class label as prediction to each partition. A
binary tree is composed of internal and terminal nodes (a.k.a. leaves). For each internal node, a
splitting rule on an explanatory variable is determined by maximizing an information gain, dividing
the training set in two parts. This process is recursively iterated until a stopping rule is achieved.
The internal node encountering a stopping rule becomes terminal. For continuous covariates, a
splitting rule compares a covariate 𝑋𝑗 to a bound 𝑠, allocating to the left branch the data verifying the
rule 𝑋𝑗 ≤ 𝑠, and to the right all others. For categorical covariates, the splitting rule is chosen among
all the possible two-way splits of the covariate categories.

The covariate index 𝑗 and the bound 𝑠 are chosen to maximize the decrease of impurity between the
mother, denoted 𝑡, and the two resulting left and right daughter nodes, denoted 𝑡𝐿 and 𝑡𝑅, (weighted
by the number of data at each node). This gain associated to a covariate 𝑗 and split value 𝑠 is always
non negative and is written as

𝐺(𝑗, 𝑠) = 𝐼 (𝑡) − (
#𝑡𝐿
#𝑡

𝐼 (𝑡𝐿) +
#𝑡𝑅
#𝑡

𝐼 (𝑡𝑅)) , (1)

where # refers to the number of data in the associated node, and 𝐼 (⋅) is the impurity. The impurity,
i.e. the heterogeneity at a given node, is measured with either the Gini index or the entropy. The
Gini index, defined for categorical variables as ∑𝐾

𝑘=1 𝑝𝑘(1 − 𝑝𝑘), is less computationally intensive as
is counterpart, the entropy, defined as ∑𝐾

𝑘=1 𝑝𝑘 log(𝑝𝑘) which gives slightly better results. In both
cases, the objective is to select the allocation rule that reduces the impurity the most, in other terms
that produces the highest gain.

Splitting events stop when one of the three following situation is reached:

• all individuals of the data set at a given node have the same response value (the node is pure),
• all individuals have the same covariate values,
• a node has less than 𝑁min instances, 𝑁min being an user-defined integer value, typically set to
1 for classification.
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Once the tree construction is complete, each leaf predicts a model index, corresponding to the
majority class of its instances. For a new set of explanatory variables 𝑥∗, predicting its model index
implies passing 𝑥∗ through the tree, following the path of binary rules, and the predicted value is the
value associated to the leaf where it falls.

The RFmethod consists in bootstrap aggregating (bagging, Breiman (1996)) randomized (classification)
trees. A large number of trees is trained on bootstrap samples of the training data set and 𝑚try
covariates are randomly selected at each internal node, on which the splitting rule will be defined.
𝑚try is usually set at ⌊√𝑑⌋, where ⌊⋅⌋ denotes the floor function. The predicted value for a data 𝑥∗
is the majority vote across all tree predictions. RF methods have some theoretical guarantees for
sparse problems (Biau 2012; Scornet, Biau, and Vert 2015). Moreover, it is well-known that their
performances are quite good even when no tuning is made.

3 Local splitting rules

We now turn to discuss local tree methods. A first option to localize the tree construction is to change
the information gain to the benefit of a local one. The idea is to use the test instance 𝑥∗ to drive the
splits and thus the tree construction.

Indeed, because the best split is selected on average, an eager tree may lead to many irrelevant
splits to predict 𝑥∗, potentially discarding data relevant for the considered example at early stages of
the tree. This behavior results from data fragmentation (Fulton et al. 1996), i.e. from the recursive
partitioning of the explanatory variables space to achieve good global performances. In the following
we mention this phenomenon as the fragmentation problem. A very simple 2-class classification
problem presented in Figure 1 illustrates this issue. The distribution of the training data set will
induce, when possible, an initial cut for the tree construction in 𝑋1 ≈ 0.5, however, the unlabeled
instance (represented by a black star) is in a region where a lot of relevant instances will be discarded
after this first data split. A more pertinent first cut should occur in 𝑋2 ≈ 0.25. This problem,
called fragmentation problem, also leads to less significant splitting rules at deeper levels of the tree
construction since based on fewer instances. It is thus interesting to consider a local approach taking
𝑥∗ into account.

It is interesting to note that building a local tree by modifying its internal construction results in
building a single trajectory only, since the splitting rules are only applied on branches containing 𝑥∗.
A local tree is therefore a tool to recursively remove non-relevant data points from the classifier rule.
Thus, a local random forest might be much faster for its construction compared to the eager version,
especially if only one instance is of interest.

In this section we present the approach of Friedman, Kohavi, and Yun (1997) to build local deci-
sion trees, called lazy decision trees, and expand it for RF. We also present our attempts at using
unidimensional or multidimensional kernels to give more weight to training samples closer to 𝑥∗.

3.1 Lazy decision trees

The lazy decision tree algorithm (LazyDT) is introduced in Friedman, Kohavi, and Yun (1997). Its
objective is to take into account 𝑥∗ during the tree construction. To do so, the information gain –
depending on 𝑗 and 𝑠 – to maximize at each node is modified compared to criterion Equation 1. Only
the difference of impurity between the mother node 𝑡 and the daughter node where 𝑥∗ ends, denoted
𝑡∗, is considered. The resulting local information gain is defined by

𝐺𝑤(𝑗, 𝑠) = 𝐼𝑤(𝑡) − 𝐼𝑤(𝑡∗), (2)
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Figure 1: An illustrative classification problem with 2 classes (purple and sky blye), containing
two covariates describing four distinguishable regions (delimited by orange dashed lines) and an
unlabeled data to classify (black star). This case will give rise to a fragmentation problem.

where 𝐼𝑤 is the information gain computed with data at the node, weighted by a weight vector
𝑤 = (𝑤 (1), … , 𝑤 (𝑁 )) (described below). Note the absence of the proportion of individuals #𝑡𝐿/#𝑡 or
#𝑡𝑅/#𝑡 compared to gain Equation 1.

To ensure that this gain is always non-negative, to each instance (𝑦 (𝑖), 𝑥(𝑖)) is assigned a weight
𝑤 (𝑖) = 1

𝑛𝑘𝐾
when 𝑦 (𝑖) = 𝑘 and where 𝑛𝑘 is the number of data labeled 𝑘 at the mother node. Indeed,

this weight ensures that all the weighted class frequencies are equal at the mother node, hence
the weighted mother node impurity 𝐼𝑤(𝑡) is maximal and the resulting gain always non-negative.
The value of 𝐼𝑤(𝑡) is equal to 𝐾−1

𝐾 for the Gini index, and to log(𝐾) for the entropy. Due to this
constant value, the maximization of Equation 2 is equivalent to the minimization of 𝐼𝑤(𝑡∗). Note that
the weights used at 𝑡∗ and 𝑡 are the same (limited to the sub-sample induced by the potential cut
depending on 𝑗 and 𝑠 for 𝑡∗), but are recomputed after each accepted tree partition.

Moreover, those weights also avoid the problem that the impurity measures only use the classes
proportions, without distinction of their associated class labels. Indeed, let us take the example of a
two-class classification problem (1 and 2), where the mother node contains 80% of data labeled 1 and
20% labeled 2. A splitting rule computed on unweighted data might induce, at the daughter node
where 𝑥∗ falls, 20% and 80% as proportions of 1 and 2, respectively. In this way, the non-weighted
gain Equation 2 would be zero, even though the discriminatory power of this cut is clearly non-null.

LazyDT provides three other major features: the use of discretised explanatory variables, the use of
options and a condition on allowed split events.

• This algorithm only handles discretised explanatory variables. A preliminary discretisation
is thus necessary, using for example the minimum description length principle (Fayyad and
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Irani 1995). This was initially introduced to enhance the algorithm speed. According to our
experiments this might also be useful when continuous noise variables are considered as
features as splitting along them may result in early strop of the algorithm. For instance in
Figure 2 below, 𝑥∗1 is localized at a border of x1 values, together with two datapoints with same
label. The next splitting rule will isolate them with 𝑥∗1 because the resulting node will be pure
and hence provide the maximum gain. 𝑥∗ would thus be classified as sky-blue, even though
a cut along x2 would have resulted in a purple prediction using many more datapoints. The
discretisation will be an asset in such situations since pure noise variables are more likely to
be discretised into a unique or few categories containing large amount of data.

• The use of options is introduced. Indeed, because features can induce very similar information
gains, Friedman, Kohavi, and Yun (1997) advise to develop all the paths – induced by splitting
rules – achieving at least 90% of the maximal possible gain. The prediction associated to a tree
for 𝑥∗ becomes the prediction of the leaf with the maximal number of individuals in its majority
class. We tried values different from 90% and it did not provide better results. Moreover, we
studied an alternative to this method of prediction: because each option provides a prediction
for 𝑥∗, we considered taking as final prediction the majority vote of these option predictions,
but again results were not more conclusive.

• Finally, LazyDT only considers split values that are not equal to the values of 𝑥∗ as potential
cuts.
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Figure 2: An illustrative classification problem with 2 classes (purple and sky blye), containing an
informative covariate (x2) and a non-informative covariate (x1) and an unlabeled data to classify
(black star). Splitting along x1 will result in a pure leaf with sky-blue label.

The LazyDT algorithm has undergone some developments. First, a bagged version to deduce class
probabilities is presented in Margineantu and Dietterich (2003). A boosted version is then introduced
in Fern and Brodley (2003). Friedman, Kohavi, and Yun (1997) mention as main drawback for this
method its inability to allow pruning. Fern and Brodley (2003) propose a heuristic to overcome this
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drawback, but their algorithm is not guaranteed to improve the classifier accuracy. Considering
trees-ensemble overcomes this weakness.

3.2 Unidimensional (per covariate) kernel approach

Most local methods are based on weights depending on the proximity to 𝑥∗. This is the case of
locally weighted regression (Cleveland 1979, 1988; Fan 1993; Hastie and Loader 1993). There are
different ways to use weights in the context of tree methods. One can think of taking into account
these weights to define the training sets on which trees are built. Such type of strategy is described
in Section 4. In this section, we examine the possibility of using weights during tree construction,
inside the tree splitting criterion.

In the wake of locally weighted regression, we set a weight to each training individual and per
covariate 𝑗 depending on its proximity to 𝑥∗𝑗 in the covariate 𝑗 space. We consider a Gaussian kernel
centered in 𝑥∗𝑗 , providing weights

𝐾ℎ𝑗(𝑥
(𝑖)
𝑗 − 𝑥∗𝑗 ), for 𝑖 ∈ {1, … , 𝑁 }.

We focus on a Gaussian kernel due to its smoothness and to avoid giving exactly zero weights to

some individuals, so that 𝐾ℎ𝑗(𝑥
(𝑖)
𝑗 − 𝑥∗𝑗 ) = 1/(√2𝜋ℎ𝑗) exp (−

(𝑥 (𝑖)𝑗 −𝑥∗𝑗 )2

2ℎ2𝑗
).

The choice of the bandwidth ℎ𝑗 is tricky. We consider as bandwidth value ℎ𝑗 the quantile of order

𝛼 of the distribution of distances to 𝑥∗: ℚ𝛼 {∣ 𝑥
(𝑖)
𝑗 − 𝑥∗𝑗 ∣𝑖=1,…,𝑁} (ie ℎ𝑗 = 𝑑 𝑗(𝛼𝑁 ) where 𝑑 𝑗(1), … , 𝑑 𝑗(𝑁 ) are

the ordered distances ∣ 𝑥(𝑖)𝑗 − 𝑥∗𝑗 ∣ of the training data points to 𝑥∗ in the covariate 𝑗 space). The
parameter 𝛼 determines the shape of the kernel. For low 𝛼 values, a higher weight is given to data
close to 𝑥∗, and vice-versa. In our numerical experiments, we clearly observed that low values of
𝛼 again result in cuts too close to 𝑥∗𝑗 . We set 𝛼 = 1, i.e. ℎ𝑗 is the maximum of the absolute values
considered. Moreover, the bandwidth can eventually be recalculated at each internal node or kept
constant during the tree construction. We observed very few differences when using a fixed or a
varying bandwidth and ℎ𝑗 is set as constant in the following.

For a given class label 𝑘, at the mother node 𝑡, this approach transforms the usual class frequencies
(giving uniform weights among data) into some weighted class frequencies in the following way:

𝑝𝑘 =
∑𝑖∶𝑥 (𝑖)∈𝑡 1{𝑦

(𝑖) = 𝑘}
#𝑡

⇒ ̃𝑝𝑘,𝑗 =
∑𝑖∶𝑥 (𝑖)∈𝑡 1{𝑦

(𝑖) = 𝑘}𝐾ℎ𝑗(𝑥
(𝑖)
𝑗 − 𝑥∗𝑗 )

∑ℓ∶𝑥 (ℓ)∈𝑡 𝐾ℎ𝑗(𝑥
(ℓ)
𝑗 − 𝑥∗𝑗 )

,

where 1{⋅} is the indicator function. Moreover, the proportion of individuals, for example, at the left
daughter node 𝑡𝐿 implied by a cut 𝑋𝑗 ≤ 𝑠 is transformed from

#𝑡𝐿
#𝑡

=
∑𝑖∶𝑥 (𝑖)∈𝑡 1{𝑥

(𝑖)
𝑗 ≤ 𝑠}

#𝑡
into

#̃𝑡𝐿
#̃𝑡

=
∑𝑖∶𝑥 (𝑖)∈𝑡 1{𝑥

(𝑖)
𝑗 ≤ 𝑠}𝐾ℎ𝑗(𝑥

(𝑖)
𝑗 − 𝑥∗𝑗 )

∑ℓ∶𝑥 (ℓ)∈𝑡 𝐾ℎ𝑗(𝑥
(ℓ)
𝑗 − 𝑥∗𝑗 )

. (3)

The information gain to maximize (based on the Gini index) thus becomes

𝐾
∑
𝑘=1

̃𝑝𝑘,𝑗(1 − ̃𝑝𝑘,𝑗) − (
#̃𝑡𝐿
#̃𝑡

𝐾
∑
𝑘=1

̃𝑝𝐿𝑘,𝑗(1 − ̃𝑝𝐿𝑘,𝑗) +
#̃𝑡𝑅
#̃𝑡

𝐾
∑
𝑘=1

̃𝑝𝑅𝑘,𝑗(1 − ̃𝑝𝑅𝑘,𝑗)) (4)
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where ̃𝑝𝐿𝑘,𝑗 and ̃𝑝𝑅𝑘,𝑗 are the weighted proportions of class 𝑘 at the left and right daughter nodes,
respectively.

̃𝐼𝑗(𝑡) =
𝐾
∑
𝑘=1

̃𝑝𝑘,𝑗(1 − ̃𝑝𝑘,𝑗) (5)

̃𝐼𝑗(𝑡𝐿) =
𝐾
∑
𝑘=1

̃𝑝𝐿𝑘,𝑗(1 − ̃𝑝𝐿𝑘,𝑗) (6)

̃𝐼𝑗(𝑡𝑅) =
𝐾
∑
𝑘=1

̃𝑝𝑅𝑘,𝑗(1 − ̃𝑝𝑅𝑘,𝑗) (7)

The first term ̃𝐼𝑗(𝑡) is important and cannot be omitted contrary to the eager version, because it
depends on the covariate index.

We use this local Gini index during the tree construction and do not modify the default values for
the RF parameters 𝑚try and 𝑁min. For each tree, the associated prediction is the usual majority vote
at the leaf.

Our local splitting rule is similar to the one used in the recent method of Armano and Tamponi (2018).
In their work, an improvement to RF is introduced by using an ensemble of local trees. Each tree is
trained giving more weight to training data around a centroid, which is sampled among the training
instances, and different centroids are considered to map the whole predictor space. Although using a
local Gini index, this approach is more of an eager one than a local one. Indeed, no test instance is
involved during the forest construction. Moreover, a multidimensional kernel per tree is used.

3.3 Multidimensional kernel approach

In the spirit of Armano and Tamponi (2018), it is natural to extend the approach introduced in
Section 3.2 with a multidimensional kernel centered in 𝑥∗. We assign to each data (𝑦 (𝑖), 𝑥(𝑖)) a weight

𝐾𝑉(𝑥(𝑖) − 𝑥∗) = 1/(2𝜋)𝑑/2 exp (−1
2
(𝑥(𝑖) − 𝑥∗)⊤𝑉−2(𝑥(𝑖) − 𝑥∗)),

where 𝑉 is a scaling matrix of the Gaussian kernel. Similarly to Section 3.2 we consider for 𝑉 the
diagonal matrix made of the 𝛼 quantiles, i.e.

𝑉 = diag (ℚ𝛼 {∣ 𝑥
(𝑖)
1 − 𝑥∗1 ∣𝑖=1,…,𝑁} , … , ℚ𝛼 {∣ 𝑥

(𝑖)
𝑑 − 𝑥∗𝑑 ∣𝑖=1,…,𝑁}) .

As for the unidimensional kernel approach, using extensive numerical experiments, we observed
that low values of 𝛼 result in cuts too close to 𝑥∗𝑗 and we set 𝛼 = 1. Also, the weights are fixed during
the tree construction.

The weighted frequency for a given class label 𝑘 becomes

̃𝑝𝑘 =
∑𝑁

𝑖=1 1{𝑦 (𝑖) = 𝑘}𝐾𝑉(𝑥(𝑖) − 𝑥∗)

∑𝑁
ℓ=1 𝐾𝑉(𝑥(ℓ) − 𝑥∗)

.

The weighted proportions of individual at the daughter nodes are transformed in a similar manner
to Equation 3, resulting in a gain criterion analogous to Equation 4.
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The major benefit of such weights is that they do not depend on the covariate index, thus the usual
tree prediction, i.e. the majority class at the leaf where 𝑥∗ falls, can be replaced by a more coherent
strategy with the tree construction, using as prediction the class with the maximal weighted class
proportion at the leaf. Thus, the prediction for 𝑥∗ provided by the 𝑏-th tree is

̂𝑦∗𝑏 = argmax1≤𝑘≤𝐾 ̃𝑝𝑘.

The forest prediction for 𝑥∗ is the usual majority vote of the tree predictions.

4 Local weighting of individuals

To avoid the fragmentation problem, instead of modifying the way the predictor space is partitioned,
one can consider directly targeting the region of interest, i.e. samples similar to 𝑥∗. In this part, we
focus on strategies acting on the individuals sampling schemes involved at the first step of a tree
construction, replacing the usual bootstrap sampling with a local one.

4.1 Weighted bootstrap

Xu, Nettleton, and Nordman (2016) propose to performweighted bootstrap sampling, where ameasure
of proximity between 𝑥∗ and the training data is used to compute the weights. This algorithm is
entitled Case-Specific Random Forest (CSRF, Algorithm 1).

An individual closer to 𝑥∗ will have higher weight and will more likely be picked in the bootstrap
sampling. However, such weights depend heavily on the choice of the proximity measure, especially
in a high dimensional setting and with many irrelevant explanatory variables. This is why in this
framework the proximity measure will be automatically computed thanks to a bagged tree-ensemble
(i.e. with 𝑚try = 𝑑).

Indeed, for a given tree, 𝑥∗ ends in a leaf with some training data. For each 𝑥(𝑖), counting the number
of trees where 𝑥∗ and 𝑥(𝑖) end in the same leaf allows to compute the contribution of 𝑥(𝑖) to predict
𝑥∗, denoted 𝜔(𝑖) in Algorithm 1. The deduced weights are then used to perform weighted bootstrap
sampling during the training of a new RF. This process can be seen as a nearest neighbors strategy:
per tree, a leaf provides a certain amount of neighbors to 𝑥∗, those are then accumulated over all the
trees to deduce instance weights.

This algorithm highly depends on the depth of the first RF trees, hence a pivotal parameter for this
strategy is 𝑁min, the minimal number of observations at an internal node. The higher 𝑁min, the
shallower the trees will be. Hence, low values of 𝑁min result in putting more weight on the closest
individuals to 𝑥∗, and vice-versa. We tried various values of 𝑁min in our experiments, and find that
optimal performance require 𝑁𝑚𝑖𝑛 not to be too small.

Algorithm 1: CSRF – local weighting of individuals

Step 1. Grow 𝐵1 bootstrapped trees with 𝑚try = 𝑑 and a given 𝑁min value

Step 2. For each training data (𝑦 (𝑖), 𝑥(𝑖)), count 𝑐(𝑖) the number of times 𝑥(𝑖) and 𝑥∗ end in the same
leaf

Step 3. Compute the resampling probability of the training individual 𝑖 relative to 𝑥∗ as 𝜔(𝑖) = 𝑐(𝑖)

∑𝑁
ℓ=1 𝑐(ℓ)

,

for 𝑖 ∈ {1, … , 𝑁}
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Step 4. Train a usual RF of size 𝐵2 with bootstrap resampling probabilities 𝜔(1), … , 𝜔(𝑁 ) and deduce
the prediction for 𝑥∗

4.2 Nearest neighbours: 0/1 weights

A more intuitive idea is based on the deduction of 𝜅 nearest neighbors (NN) to 𝑥∗, which are then
used to train an RF. Fulton et al. (1996) propose several methods to extract data local to 𝑥∗ – the
best one being based on NN – in order to build decision trees on this restricted training set. Galván
et al. (2009) also mention the possibility of pre-selecting closest observations to 𝑥∗ (possibly with
replicates) at first and applying any machine learning algorithm on these data set. This kind of
strategy is more recently applied in a text classification framework by Salles et al. (2018), and shows
good improvements in terms of classification errors compared to RF (and other ones).

Those approaches are closely related to CSRF (Section 4.1) since considering NN during a preliminary
step is equivalent to giving 0/1 sampling weights (with or without replacement).

In Section 7, we compare the use of a preliminary selection of nearest neighbors to 𝑥∗ followed by a
usual RF training, this strategy is denoted in the remaining by NN-RF, for nearest neighbors - random
forest. The main issue of such approaches (and local ones in general) is the difficulty to choose this
neighborhood.

5 Local weighting of covariates

Instead of acting on the bootstrap resampling of RF, we propose to operate on the covariates subsam-
pling which occurs at each internal node. In the wake of Section 4.1 we propose to weight covariates
during the RF trees construction depending on their importance to predict 𝑥∗. In the following we
mention it as LVI-RF (for local variable importance - random forest).

We study the influence of considering sampling probability weights on explanatory variables. The
principle is detailed in Algorithm 2 and is very similar to Algorithm 1.

We take profit of a first RF construction with default parameters to deduce covariate importance to
predict 𝑥∗: in a very intuitive way we pass 𝑥∗ through each tree of the RF, and count the number of
times each covariate is involved in a splitting rule to allocate 𝑥∗. We can then easily deduce some
predictor weights, and we propose to introduce them into the usual RF covariate sampling, so that a
covariate with high weight is more likely to be drawn in the 𝑚try-sample.

Our thought is that using such weights might improve the prediction accuracy of the RF, especially
in a sparse framework, by avoiding useless data fragmentation according to irrelevant predictors and
potential loss of useful training data for the prediction of 𝑥∗. Moreover, a different set of explanatory
variables might be useful to predict different test instances, thus thanks to a local measure of variable
importance we also try to ensure that interesting covariates are more likely to be sampled during
the tree construction. Finally, in the case of a huge number of noise covariates, even though RF
can handle a large number of features, useful ones are very unlikely to be drawn during the tree
construction, deteriorating the algorithm performance. In counterpart, weighted covariate sampling
might increase the prediction correlation between the RF trees and alter the performance of the
global tree ensemble.

Algorithm 2: Local weighting of covariates
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Step 1. Grow 𝐵1 randomized trees with 𝑚try = ⌊√𝑑⌋ and 𝑁min = 1

Step 2. For each covariate 𝑗 ∈ {1, … , 𝑑}, count 𝑣𝑗 the number of times 𝑋𝑗 has been used during the
paths followed by 𝑥∗

Step 3. Compute the resampling probability of the covariate 𝑗 relative to 𝑥∗ as 𝑝𝑗 =
𝑣𝑗

∑𝑑
ℓ=1 𝑣ℓ

, for

𝑗 ∈ {1, … , 𝑑}

Step 4. Train a usual RF of size 𝐵2 with covariate resampling probabilities 𝑝1, … , 𝑝𝑑 at each internal
node and deduce the prediction for 𝑥∗

Some approaches dealing with covariate weighting have been studied in a non-local framework.
Amaratunga, Cabrera, and Lee (2008) propose the enriched random forests in an extremely noisy
feature space, where covariate sampling is modified using global weights. Maudes et al. (2012), with
their random feature weights approach, investigate the use of non-uniform sampling of covariates,
changing for each tree.

6 Local weighting of votes

The final prediction of a classical RF is the majority vote of all trees, hence they all have equal weight.
However a given tree might provide very good predictions on some test instances, but perform very
poorly on others. This is why a strategy for building local random forests is based on weighting tree
predictions depending on their ability to correctly predict instances similar to 𝑥∗. Majority vote is
hence replaced with locally weighted vote.

In the instance-based framework, Robnik-Šikonja (2004); Tsymbal, Pechenizkiy, and Cunningham
(2006) and then Zhang, Ren, and Suganthan (2013) investigate this idea. Given a test instance 𝑥∗, 𝜅
neighbors are selected based on the proximity measure introduced in Breiman (2001), (i.e. the average
number of times two data end in the same leaf) to compute a per-tree error score. These scores are
further used to select and weight trees and to provide a final weighted-vote prediction.

6.1 Dynamic voting and selection

This section describes the methodology of Tsymbal, Pechenizkiy, and Cunningham (2006), called
Dynamic Voting with Selection Random Forest (DVSRF). A first RF is trained thanks to which 𝜅
nearest neighbors to 𝑥∗ are selected. The quality of the 𝑏-th tree toward 𝑥∗ is then evaluated as the
average margins of the out-of-bag 𝜅 instances, weighted by proximities, i.e.

𝑤𝑏(𝑥∗) =
∑𝜅

𝑖=1 1{𝑥(𝑖) ∈ OOB𝑏} 𝜎(𝑥∗, 𝑥(𝑖))mr𝑏(𝑥(𝑖))

∑𝜅
ℓ=1 1{𝑥(ℓ) ∈ OOB𝑏} 𝜎(𝑥∗, 𝑥(ℓ))

, (8)

where OOB𝑏 is the set of out-of-bag data for the 𝑏-th tree, 𝜎(𝑥∗, 𝑥(𝑖)) is the proximity measure provided
by the RF, to the power of 3, and the margin function mr𝑏(𝑥(𝑖)) is equal to 1 if the 𝑏-th tree predicts
𝑦 (𝑖) correctly, −1 otherwise. Weights Equation 8 are then normalized to be positive and to sum to
one. Finally, the prediction for 𝑥∗ is computed using the majority class of the weighted tree vote
proportions

̂𝑦∗ = argmax1≤𝑘≤𝐾 𝑝DVS,𝑘 (9)
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where 𝑝DVS,𝑘 =
∑𝐵

𝑏=1 1{ ̂𝑦∗𝑏 = 𝑘}𝑤𝑏(𝑥∗)

∑𝐵
ℓ=1 𝑤ℓ(𝑥∗)

and ̂𝑦∗𝑏 denotes the original prediction of the 𝑏-th tree for 𝑥∗. \ A predefined number of trees denoted
𝐵sel (usually half of 𝐵), carrying the highest weights, can be selected and used for the final prediction,
modifying weighted predictions Equation 9 accordingly.

6.2 Kernel weighted voting

In the same spirit, we investigate the use of amultidimensional kernel as similaritymeasure (presented
in Section 3.3 and we replace the margin function by the simpler alternative 1{ ̂𝑦 (𝑖)𝑏 = 𝑦 (𝑖)} indicating
whether the 𝑏-th tree prediction for 𝑥(𝑖), denoted ̂𝑦 (𝑖)𝑏 , is correct or not.

Using the same notations as above, the 𝑏-th tree weight is hence computed in the following way:

𝑤𝑏(𝑥∗) =
∑𝑁

𝑖=1 1{𝑥(𝑖) ∈ OOB𝑏} 𝐾𝑉(𝑥(𝑖) − 𝑥∗) 1{ ̂𝑦 (𝑖)𝑏 = 𝑦 (𝑖)}

∑𝑁
ℓ=1 1{𝑥(ℓ) ∈ OOB𝑏} 𝐾𝑉(𝑥(ℓ) − 𝑥∗)

. (10)

All 𝑁 labeled data are used for the weight computation, their importance being measured by the
kernel. 𝛼 is again set to 1 and tree selection is not performed. In the following this proposal is
denoted as KV-RF (for kernel voting - random forest).

7 Numerical experiments

In this section, we compare the previously presented methods – summarized below – on two
(simulated) Gaussian mixtures examples and a population genetics example.

• CSRF - Case-specific RF - Section 4.1
• NN-RF - Nearest-neighbors RF - Section 4.2
• LVI-RF - Local variable importance RF - Section 5
• DVSRF - Dynamic voting with selection RF - Section 6.1
• KV-RF - Kernel voting RF - Section 6.2

Methods are run ten times on the same test data set. The average and standard deviation of the ten
resulting misclassification error rates, per method, are reported as a measure of performance. Note
that in order to recover the predictions for the whole test table, each local algorithm is reapplied
to each test data. The first two Gaussian examples have the advantage of being simple enough to
compute the Bayes classifier which gives the optimal error rate.

The lazy decision random forest approach presented in Section 3.1 as well as both approaches
involving kernels (unidimensional kernels and multidimension kernel presented in Section 3.2 and
Section 3.3 were implemented and compared on a lower dimensional simulation study (second
Gaussian examples with only 500 test data and 4 replications, results presented in Section 7.2 but
were dropped of the final comparison due to high computational cost despite poor results. Indeed,
localizing trees with identical criterion should be faster, but with modified criterion (information
gain or kernel-based Gini criterion), they require the computation of one weight per training data in
the leaf, which can be very burdensome. This is particularly true since given our first results, we
have not optimized our codes to allow faster computations.

The random forests are built using the default parameters, i.e. trees are maximal (𝑁min = 1), and the
covariate sampling parameter is 𝑚try = ⌊√𝑑⌋. Moreover, each forest is made of 100 trees, meaning
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CSRF and LVI-RF use a total of 200 trees. Additional/different tuning parameters are specified in the
displayed result tables. All the methods involve classic RF, we use the R package ranger (Wright and
Ziegler 2017) for their construction.

7.1 Balanced Gaussian mixture example

We consider 40-dimensional data from four classes (1, 2, 3, 4). The classes have equal weight: 𝑝1 =
𝑝2 = 𝑝3 = 𝑝4 = 1/4. The data are generated from 20-dimensional Gaussian distributions and 20
noise explanatory variables are added, simulated according to a uniform distribution 𝒰[0;10,000]. We
consider two training data sets of sizes 3, 000 and 10, 000, both sampled among the 4 classes with
equal probabilities. In both cases, 5, 000 simulations are used as testing data set, also sampled equally
among the 4 models.

The parameters associated to the 20-multidimensional Gaussian distribution are

𝜇1 = (0.8, 3, 1, 2.5, … , 1, 2.5)⊤ , 𝜇2 = (3.2, 3, 2.5, 2.5, … , 2.5, 2.5)⊤ ,

𝜇3 = (2, 1, 2, 2.3, … , 2, 2.3)⊤ , 𝜇4 = (2, 0, 2, 1.8, … , 2, 1.8)⊤ ,
Σ1 = diag(3, 3, 3, 1, … , 3, 1), Σ2 = diag(3, 3, 3, 5, … , 3, 5),
Σ3 = diag(4, 1, 4, 1, … , 4, 1), Σ4 = diag(2.5, 1, 2.5, 1, … , 2.5, 1).

The first two dimensions are the most relevant for discriminating between the four classes. They are
represented in Figure 3. Indeed, although the remaining ones can provide information to identify the
class labels, they are more overlapping with each others and hence less informative. We also consider
a higher dimensional setting in which we add 100 additional noise variables (sampled as uniforms on
[0, 1]) for which we reproduce the same training / test combinations. The results are presented in
Table 1 for 10, 000 training data. In both scenarios, using only 3, 000 training data increased the error
rates of about 2% for each method, but did not change the comparison.

The only method that manages to outbeat a standard random forest is the Nearest-Neighbors RF
(about 1% of error rate), while all other methods have similar or worse results than RF.

7.2 Unbalanced Gaussian mixture example

We still consider four classes but their model prior probabilities are 𝑝1 = 𝑝2 = 0.4 and 𝑝3 = 𝑝4 = 0.1.
Once again, we considered two training data sets, one made of 3, 000 samples, the other of 10, 000
samples, drawn among the four classes according to these probabilities. The testing set considers
5, 000 data equally sampled among the two classes 3 and 4, the least frequent ones. In this example
we therefore measure the prediction accuracy of low-frequency data.

The first two covariates are still the most important ones, however we slightly modified the Gaussian
parameters (the first two diagonal terms for Σ1 and Σ2 are now 2 and 1) to induce as best split rule
for a CART: 𝑋1 ≈ 2. This example hence becomes an illustration of the fragmentation problem
we mentioned earlier (Figure 1). Indeed, the first cut produced by the eager RF algorithm – if this
covariate is sampled – will split the elements labeled 3 and 4 in half (at 𝑋1 ≈ 2). It implies the loss of
some potentially relevant training data to predict those two classes. We hope local approaches can
handle such an example which also contains very unbalanced classes proportions, see Figure 4. Once
again we also consider the same scenario where we add 100 additional noise variables drawn from
uniform distributions on [0, 1]. The results are presented in Table 2. Once again, only the results for
10, 000 training data are shown as the methods comparison is similar for 3, 000 data, at the price of a
higher error rate (about 2%).

In this example, when no additional noise is considered, bagging CARTs and Random forest have
similar performance, which is once again slightly beaten by a Nearest-neighbors random forest with
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Figure 3: First Gaussian example: two first explanatory variables 𝑋1 and 𝑋2 ; colors indicate the class
labels (1-sky blue, 2-purple, 3-sand, 4-dark green).

Table 1: First Gaussian example: prediction error rate (percentage), with 10000 training data. With
20 variables (columns 3 and 4), and with 100 additional noise variables (columns 5 and 6)

Method Parameters Error rate (sd) Error rate (sd)
Bayes classifier 14.638 (0.551) 14.566 (0.285)
Bagged CARTs 21.608 (0.831) 24.154 (0.628)
Random forest 19.834 (0.674) 21.638 (0.524)
CSRF Nmin=5 22.546 (0.639) 23.506 (0.684)
CSRF Nmin=10 22.638 (0.785) 23.678 (0.762)
CSRF Nmin=50 22.634 (0.77) 23.648 (0.692)
CSRF Nmin=150 22.308 (0.679) 23.506 (0.611)
CSRF Nmin=250 22.302 (0.524) 23.8 (0.78)
CSRF Nmin=350 22.176 (0.467) 23.838 (0.691)
NN-RF k=1000 18.71 (0.537) 21.428 (0.464)
NN-RF k=1500 18.718 (0.677) 20.744 (0.679)
NN-RF k=2500 19.494 (0.845) 20.13 (0.678)
LVI-RF 20.84 (0.605) 21.634 (0.408)
DVSRF k=3000,Bsel=100 20.018 (0.451) 22.136 (0.466)
DVSRF k=3000,Bsel=50 20.276 (0.567) 23.286 (0.376)
KV-RF alpha=1 19.81 (0.677) 21.588 (0.443)
KV-RF alpha=0.75 19.964 (0.817) 21.612 (0.407)
KV-RF alpha=0.5 19.86 (0.609) 22.768 (0.402)
KV-RF alpha=0.25 20.184 (0.507) 23.356 (0.563)
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Figure 4: Second Gaussian example: two first explanatory variables 𝑋1 and 𝑋2 ; colors indicate the
classes (1-sky blue, 2-purple, 3-sand, 4-dark green).

Table 2: Second Gaussian example: prediction error rate (percentage), with 10000 training data. With
20 variables (columns 3 and 4), and with 100 additional noise variables (columns 5 and 6)

Method Parameters Error rate (sd) Error rate (sd)
Bayes classifier 25.626 (0.725) 25.53 (0.539)
Bagged CARTs 39.818 (0.882) 43.988 (1.219)
Random forest 40.27 (1.249) 49.02 (1.131)
CSRF Nmin=5 42.35 (0.56) 46.756 (0.948)
CSRF Nmin=10 42.364 (0.529) 46.724 (1.043)
CSRF Nmin=50 41.924 (0.504) 46.75 (0.871)
CSRF Nmin=150 41.52 (0.711) 46.788 (0.957)
CSRF Nmin=250 41.172 (0.728) 47.074 (1.071)
CSRF Nmin=350 40.77 (0.862) 46.748 (0.968)
NN-RF k=1000 38.26 (1.021) 50.686 (1.185)
NN-RF k=1500 38.656 (1.179) 50.116 (1.341)
NN-RF k=2500 39.012 (0.801) 49.776 (1.239)
LVI-RF 42.234 (1.271) 42.266 (0.967)
DVSRF k=3000,Bsel=100 40.35 (1.03) 49.362 (1.185)
DVSRF k=3000,Bsel=50 40.992 (0.966) 49.758 (1.404)
KV-RF alpha=1 40.238 (1.001) 48.78 (1.376)
KV-RF alpha=0.75 39.968 (1.17) 48.932 (1.147)
KV-RF alpha=0.5 40.206 (1.133) 49.304 (1.098)
KV-RF alpha=0.25 40.49 (0.987) 49.684 (0.998)
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Table 3: Smaller second Gaussian example: prediction error rate for only 500 test data, with runtime
comparison

Method Parameters Error rate (sd) RunTime (seconds)
Bagged CARTs 46.85 (2.542) 2.9
Random forest 49.65 (2.7) 0.6
CSRF Nmin=5 48.2 (2.546) 181.6
CSRF Nmin=10 47.75 (2.484) 182.3
CSRF Nmin=50 47.45 (2.042) 186.6
CSRF Nmin=150 48.3 (1.483) 195.6
CSRF Nmin=250 47.85 (2.408) 203
CSRF Nmin=350 48.35 (1.473) 208.1
NN-RF k=1000 56.35 (2.941) 26486.9
LVI-RF 47.8 (2.179) 336.8
DVSRF k=3000,Bsel=100 48.55 (2.505) 6
KV-RF alpha=1 49.1 (2.783) 56.1
KV-RF alpha=0.75 49.85 (2.589) 58
KV-RF alpha=0.5 49.1 (1.8) 58.5
KV-RF alpha=0.25 50.65 (1.9) 58.1
Multi-K 49.55 (4.129) 204851.5
Uni-K 50.85 (2.462) 198210

moderate number of neighbors. When the number of noise variable increases, surprisingly bagging
Carts outperforms classic random forest, and is slightly beaten by the Local variable importance RF
which manages to select important variables to build trees.

Finally, we performed an independent experiment using the same unbalanced design with noise where
we also included a comparison with LazyRF and the univariate and multivariate kernel approach
on only 500 test data and 4 replicates. The total experiment took 41 days to run using 10 cores of a
standard high performance computing cluster. The results are displayed in Table 3. Even though it
is hard to compare the results on such small experiments (500 tests hardly cover a 23-dimensional
space), there is no clear performance gain for methods LazyRF, Multi-K and Uni-K, who run up to
750 thousand times slower than a classic RF.

7.3 Spherical fragmented example

We consider an example that combines a fragmentation situation with a spherical data distribution to
challenge the splitting rules of standard random forests. Datapoints are drawn from a 3-dimensional
Gaussian centered distribution with variance 4 and null covariance. The classes are drawn with
uneven probabilities from three labels depending on the location.

For datapoints within a 2.5 distance from the origin:

• if the angle with the first axis is less than 120° in the first 2 dimensions projection [(𝑥1, 𝑥2)
projection], the class is 1 with probability 0.8, and 2 and 3 with probability 0.1 ;

• if the angle with the first axis is greater than 240° in the first 2 dimensions projection, it is class
2 with probability 0.8 and 1 or 3 with probability 0.1

• if the angle is between 120° and 240°, and class 3 with probability 0.8, and 1 or 2 with probability
0.1 otherwise.
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If the data point is within a 2.5 to 3.75 distance to the origin, the label class is drawn as previously but
considering the (𝑥1, 𝑥3) projections, and if the distance is greater than 3.75 we consider the (𝑥2, 𝑥3)
projections. An example is illustrated in Figure 5.

In this example we performed a slightly different runtime comparison of all methods, conducting
the experiment for only one test datapoint and using only one computing node. This allows a fairer
comparison between methods which make use of global approaches and those that are entirely local.
Results are given as fold-time the runtime of the classic RF, in Table 4.
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Figure 5: Spherical fragmented example: two first explanatory variables 𝑋1 and 𝑋2 ; colors indicate
the class labels (1-sky blue, 2-purple, 3-sand).

In this example, once again bagging CARTs outperforms all other methods, while classic random
forests are beaten by almost all other methods except nearest-neighbour Random Forests, who suffer
most from the fragmentation issue. Local variable importance RF and Case-specific Random forests
perform quite well.

7.4 Population genetics example

We now compare a set of local strategies on a basic population genetics example introduced in
Pudlo et al. (2016). The historical link between three populations of a given species is of interest.
More precisely, we are interested in studying whether a third population emerged from a first or a
second population, or whether it emerged from a mixture between the first two. This problem is
hence a three classes classification question. The data is made of 1, 000 autosomal single-nucleotide
polymorphisms (SNPs). We assume that the distances between these loci on the genome are large
enough to neglect linkage disequilibrium, we hence consider them as having independent ancestral
genealogies.

The data is summarized thanks to 𝑑 = 48 summary statistics available within the DIY-ABC software
for SNPmarkers (Cornuet et al. 2014), which is also used to simulate training and test sets respectively
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Table 4: Spherical fragmented example: prediction error rate (percentage), with 10000 training data,
and runtime comparison

Method Parameters Error rate (sd) Runtime (fold RF)
Bagged CARTs 26.408 (0.817) 5.38
Random forest 31.58 (0.821) 1
CSRF Nmin=5 28.464 (0.785) 5.68
CSRF Nmin=10 28.206 (0.814) 5.58
CSRF Nmin=50 27.94 (0.783) 5.22
CSRF Nmin=150 28.248 (0.953) 3.98
CSRF Nmin=250 28.504 (0.762) 2.94
CSRF Nmin=350 28.682 (0.957) 2.35
NN-RF k=1000 43.82 (1.375) 10.35
NN-RF k=1500 41.436 (1.305) 10.39
NN-RF k=2500 38.288 (1.155) 10.44
LVI-RF 27.824 (0.666) 2.02
DVSRF k=3000,Bsel=100 30.894 (0.808) 1.18
DVSRF k=3000,Bsel=50 30.684 (1.039) 1.14
KV-RF alpha=1 31.456 (1.088) 1.13
KV-RF alpha=0.75 31.656 (0.886) 1.11
KV-RF alpha=0.5 31.6 (0.876) 1.11
KV-RF alpha=0.25 32.89 (0.825) 1.11

of size 10, 000 and 1, 000, equally distributed among the three scenarios. Moreover, the data are
constrained to be drawn in the [−1; 1]2 square on the linear discriminant analysis (LDA) axes
projections graph, which is a region where scenarios are hard to discriminate, see Figure 6.

Similarly to the Gaussian mixture examples, the methods are run ten times on the same data. The
averaged misclassification error rates and the associated standard deviation are displayed in Table 5.

In this example again, bagging CARTs outperforms a classic random forest. Most local approaches
can be tuned to reach a classic RF performance, but none manage to significantly outperform it, let
alone reach bagging CARTs results.

8 Data accessibility and reproducibility

The global computational time for the examples presented above represent several days of multiple
cores usage and are therefore not directly proposed to the reader. All codes, data and session
information are available at github.com/computorg/published-202312-cleynen-local. Note that during
the preparation of the manuscript we detect an issue in the implementation of the Case Specific
Random Forests function (csrf) function of the R package ranger and have to redo quite a lot of
calculation to ensure reproducibility.

In this section, we reproduce the first Gaussian example presented above (without additional noise)
with only 500 training data, 100 test data and 5 replicates, to illustrate the methods and produce
similar tables to Table 1 to Table 5. The results in themselves are not interpretable due to the low
dimensionality of the test and training data, so most methods were only illustrated with one set of
parameters. However, changing parameters value in the code is straightforward.
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Figure 6: Population genetics example: projections on the LDA axes of the 10, 000 training instances
; colors represent scenario indices: sky-blue for model 1, sand for model 2 and purple for model 3 ;
the hard to discriminate [−1; 1]2 region is represented by black dashed lines.

Table 5: Population Genetics example: prediction error rate (percentage), with 10000 training data
and 1000 test data

Method Parameters Error rate (sd)
Bagged CARTs 36.626 (0.859)
Random forest 38.288 (0.935)
CSRF Nmin=150 38.168 (0.926)
CSRF Nmin=250 38.078 (0.682)
DVSRF k=3000,Bsel=100 38.166 (0.78)
NN-RF k=1000 38.58 (0.765)
NN-RF k=1500 38.422 (0.631)
NN-RF k=2500 38.308 (0.746)
LVI-RF 38.046 (1.054)
DVSRF k=3000,Bsel=50 38.616 (0.746)
KV-RF alpha=1 37.848 (0.766)
KV-RF alpha=0.75 38.12 (0.764)
KV-RF alpha=0.5 38.12 (0.888)
KV-RF alpha=0.25 38.726 (0.662)
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Table 6: Toy example: prediction error rate (percentage)

Method Parameters Error rate (sd)

Bayes classifier 14.6 (3.78)
Bagged CARTs 29.4 (2.07)
Random forest 27.4 (1.82)
CSRF Nmin=5 29.2 (3.35)
CSRF Nmin=10 29.6 (3.21)

NN-RF k=250 26.8 (4.32)
LVI-RF 28.2 (5.45)
DVSRF k=100,Bsel=100 25.2 (1.64)
KV-RF 25 (2.55)

9 Discussions

In this paper, we review, discuss and propose local tree-based methods strategies taking into account
a specific instance during the learning process in the context of classification problems. The results
are not up to our expectations. We considered four examples where local methods seemed useful but
we did not obtained conclusive results.

Our proposal to introduce weights in the splitting criterion (see Section 3): LazyDT and kernel
approaches) is problematic. Putting too high weights around 𝑥∗ results in irrelevant cut-points, closer
to 𝑥∗ compared to RF. It induces large correlations between the trees in the forest, and the quality
of prediction is impacted negatively. This is why for the kernel approaches a bandwith of quantile
𝛼 = 1 is preferred. With this choice, even if it localized the trees, we obtained results very similar if
not worse than those of RF, at the cost of very high computational complexity. Less computationally
intensive but as disappointing is the kernel voting RF strategy.

The CSRF of Xu, Nettleton, and Nordman (2016) (see Section 4.1), the nearest neighbor weights
(Section 4.2) and the local weighting of covariates (Section 5) strategies can give good performance
but depend on tuning parameters. For instance, the CSRF brings better performance when the tree
depth is low, i.e. high 𝑁min. However, generally, results provided by these local methods are very
similar to eager ones, and no great benefit is observed on our three examples. When looking at the
very small benefits in terms of prediction error rate compared to the non-local approaches, we can
say that local strategies are clearly not worth the additional computational cost. Especially since
most of them require the choice of a tuning parameter, characterizing the weights given to instances
surrounding 𝑥∗.

We have not considered here the case of regression problems, for which local tree-based methods have
also been proposed. For instance the CSRF, the nearest neighbor weights and the dynamic voting
with selection random forests are directly applicable to regression forests, and in most cases already
implemented. Similarly, our propositions regarding local weighting of covariates, and local splitting
criterion using kernels would easily be extendable to regression problems. In a local regression
framework, Friedberg et al. (2020) consider a two-step approach where the response 𝑦⋆ is predicted
from a locally weighted ridge regression using weights from a modified random forest. This forest
is built with a modified splitting criterion which minimizes the residuals in each leaf after fitting a
ridge regression to predict 𝑦𝑗 from 𝑥𝑗. Whether these methods improve the original random forest in
the case of regression is still an open question, but our results in the case of classification are not
optimistic.
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