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Abstract

In plant epidemiology, pest abundance is measured in field trials using metrics assessing either
pest prevalence (fraction of the plant population infected) or pest intensity (average number
of pest individuals present in infected plants). Some of these trials rely on prevalence, while
others rely on intensity, depending on the protocols. In this paper, we present a hierarchical
Bayesian model able to handle both types of data. In this model, the intensity and prevalence
variables are derived from a latent variable representing the number of pest individuals on each
host individual, assumed to follow a Poisson distribution. Effects of pest treaments, time trend,
and between-trial variability are described using fixed and random effects. We apply the model
to a real data set in the context of aphid control in sugar beet fields. In this data set, prevalence
and intensity were derived from aphid counts observed on either factorial trials testing different
types of pesticides treatments or field surveys monitoring aphid abundance. Next, we perform
simulations to assess the impacts of using either prevalence or intensity data, or both types of
data simultaneously, on the accuracy of the model parameter estimates and on the ranking of
pesticide treatment efficacy. Our results show that, when pest prevalence and pest intensity data
are collected separately in different trials, the model parameters are more accurately estimated
using both types of trials than using one type of trials only. When prevalence data are collected
in all trials and intensity data are collected in a subset of trials, estimations and pest treatment
ranking are more accurate using both types of data than using prevalence data only. When
only one type of observation can be collected in a pest survey or in an experimental trial, our
analysis indicates that it is better to collect intensity data than prevalence data when all or most
of the plants are expected to be infested, but that both types of data lead to similar results when
the level of infestation is low to moderate. Finally, our simulations show that it is unlikely to
obtain accurate results with fewer than 40 trials when assessing the efficacy of pest control
treatments based on prevalence and intensity data. Because of its flexibility, our model can be
used to evaluate and rank the efficacy of pest treatments using either prevalence or intensity
data, or both types of data simultaneously. As it can be easily implemented using standard
Bayesian packages, we hope that it will be useful to agronomists, plant pathologists, and applied
statisticians to analyze pest surveys and field experiments conducted to assess the efficacy of
pest treatments.
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1 Introduction

In plant epidemiology, pest and disease presence can be measured in a host population using different
metrics. A first metric measures the presence/absence of the pest in the individuals (plants) of the
host population. This metric is often called prevalence or incidence (Madden and Hughes (1999),
Shaw et al. (2018)). The prevalence describes the proportion of the host population in which the pest
is present. This metric is relevant and widely used, but it does not account for the number of pest
individuals per host individual. With the prevalence, a plant infected by one single pest individual
(e.g., an insect) and a plant infected by many pest individuals both represents one infected plant. For
this reason, pest abundance is sometimes assessed using another metric representing the average
number of pest individuals per host individual. This metric is called intensity or severity (Madden and
Hughes (1999), Shaw et al. (2018)), and describes the intensity of the disease in the target population.
These two metrics do not generally have the same requirement in terms of working time; measuring
intensity takes indeed much more time than measuring prevalence because it is very tedious to count
all pest individuals, especially when individuals are small, numerous, and/or difficult to detect.

Pest prevalence and intensity are commonly measured in factorial field trials to test the efficacy
of different treatments. In this paper, we place ourselves in an important application framework
which is the evaluation of alternative pesticide treatments to neonicotinoids against aphids in sugar
beet. Indeed, neonicotinoids had been a popular chemical treatment to control aphids for many
years, especially in sugar beets, a major crop in Europe. Recently, neonicotinoids were recognized
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as presenting high risks for the environment with a negative impact on a wide range of non-target
organisms, including bees (Wood and Goulson (2017), Pisa et al. (2015)), and this family of pesticides
has been banned in several European countries. In order to find a substitute to neonicotinoids,
a number of factorial field trials were conducted to compare the efficacy of different alternative
treatments during several years in different countries. Each trial consists of a set of plots divided
into several blocks, themselves divided into several strips on which different pesticide treatments
are randomly allocated. One strip always remains untreated to serve as a control. In each strip,
aphid prevalence, aphid intensity or both metrics are measured in a sample of plants (usually, 10-20
plants per strip). Depending on the protocol and on the working time constraint, either one type
or both types of metrics are measured. Consequently, for a given pest treatment, some trials may
report prevalence data while others report intensity data or both types of data. This heterogeneity
raises several issues. A first issue concerns the statistical analysis of the trials reporting prevalence
and intensity. Although it is easy to fit a generalized linear model to each type of data separately,
it is less straightforward to fit a single model to the whole set of trials in order to obtain a single
ranking of the pest treatments taking into account both types of data at the same time. Generally,
factorial trials assessing treatment efficacy are analyzed with statistical models that take into account
one of the two metrics but not both. Prevalence data are thus commonly analyzed using binomial
generalized linear models and intensity data are frequently analyzed with Poisson generalized linear
models (Michel, Brun, and Makowski (2017), Laurent et al. (2023), Agresti (2015)). As far as we
know, no statistical model has been proposed to assess treatment efficacy based on the simultaneous
analysis of prevalence and intensity data. In Osiewalski and Marzec (2019), the authors introduced
a switching model designed to handle two count variables, one of which may be degenerate. This
model was employed to characterize the counts of cash payments and bank card payments in Poland,
utilizing data from both cardholders and non-cardholders. A generalized form of the bivariate
negative binomial regression model was developed in Gurmu and Elder (2000), allowing for a more
flexible representation of the correlation between the dependent variables. This model was applied to
describe the number of visits to a doctor and the number of visits to non-doctor health professionals.
It outperformed existing bivariate models across various model comparison criteria. In order to
analyze data related to crash counts categorized by severity, Park and Lord (2007) employed a
multivariate Poisson log-normal model, effectively addressing both over-dispersion and a fully
generalized correlation structure within the data set. However, it should be noted that these models
did not include any binomial distribution and thus could not be used to deal with proportion data,
such as pest prevalence. Another issue concerns the practical value of combining both prevalence
and intensity data. It is unclear whether the simultaneous analysis of prevalence and intensity data
may increase the accuracy of the estimated treatment efficacy compared to the use of a single type
of data, and whether this may increase the probability of identifying the most efficient treatments.
Finally, it is also unclear how future trials should be designed, in particular how many trials are
required to obtain accurate estimations, and whether intensity data should be preferred to prevalence
data.

In this paper, we propose a new flexible statistical model that can be used to rank pest treatments from
trials including prevalence data, intensity data, or both. We apply it to a real data set including trials
testing the efficacy of pesticides against aphids infesting sugar beets, considering contrasted scenarios
of data availability, and we show how the proposed model can be used to evaluate the efficacy of
different treatments. Based on simulations, we then quantify the reduction of mean absolute errors
in the estimated treatment efficacy resulting from the use of both prevalence and intensity data
during the statistical inference, compared to the use of either prevalence or intensity data. The rest
of the paper is organized as follows. First, we present the structure of the data set including real
prevalence and intensity data. Next, we describe in detail the proposed model, the inference method,
and the simulation strategy. After checking the convergence of the fitting algorithm, we show how
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the model can be used to assess treatment efficacy. We finally present the results based on simulated
data and we make several recommendations.

2 Material and Method

2.1 Description of the data

Data are collected in 32 field trials conducted in France, Belgium and the Netherlands to compare
several treatments against aphids in sugar beets. Each trial consists in a plot located in a given site at
a given year (site-year) divided into one to four blocks. Each of these blocks is itself divided into
strips where different treatments are tested, one of these treatments being an untreated control and
the others corresponding to different types of insecticide. In each strip of each block, the number of
aphids is counted on a sample of 10 beet plants (intensity). The number of infested plants (prevalence)
is measured as well, but only in 15 trials out of 32. The total numbers of intensity and prevalence
data are equal to 1128 and 561, respectively. Note that the number of aphids is not counted on each
beet plant but in the whole plant sample. Intensity and prevalence are monitored at different times
after treatments. As shown in Figure 1 A, the data set is unbalanced as less data are available for the
treatment Mavrik-jet compared to the others. Figure 1 B shows that the intensity and prevalence
tend to increase with time.

2.2 Model

2.2.1 Specification

We introduce an unobserved variable representing the number of pest individuals (here, aphids) on
each plant in a sample of 𝑁 plants (here, sugar beets). This variable is noted 𝑊 and is assumed to
follow a Poisson probability distribution whose mean value is a function of time.

We use the following indexes: 𝑖 for the trial, 𝑗 for the treatment, 𝑘 for the block, 𝑡 for the time and 𝑠
for the plant number. The distribution of 𝑊𝑖𝑗𝑘𝑡𝑠 is defined as:

𝑊𝑖𝑗𝑘𝑡𝑠 ∼ 𝒫 (𝜆𝑖𝑗𝑘𝑡) (1)

log 𝜆𝑖𝑗𝑘𝑡 = 𝛼0 + 𝛽0𝑖 + 𝛾0𝑗 + (𝛼1 + 𝛾1𝑗) 𝑋𝑡 + 𝑢𝑖𝑗 + 𝜖𝑖𝑗𝑘𝑡 (2)

with

• 𝛽0𝑖 ∼ 𝒩 (0, 𝜎20 )
• 𝑢𝑖𝑗 ∼ 𝒩 (0, 𝜒2)
• 𝜖𝑖𝑗𝑘𝑡 ∼ 𝒩 (0, 𝜂2)

The random variables are all assumed independent. The parameters 𝛼0, 𝛼1, 𝛾0𝑗, and 𝛾1𝑗 are considered
as fixed. This model serves as a tool for conducting inference on a population of trials, from which the
subset of trials comprising our data set is assumed to constitute a random sample. In essence, the trials
containedwithin our database are leveraged to estimate the parameter values that characterize a target
population, where the tested pest control treatments will be actually implemented. Consequently, all
parameters contingent on individual trials have been defined as random effects.

The observed variables (intensity and prevalence) can be expressed as a function of 𝑊. We note:

• 𝑌𝑖𝑗𝑘𝑡 the number of pest individuals (aphids) in the sample of 𝑁𝑖 plants collected in trial i,
treatment j, block k, at time t
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Figure 1: Description of the data set. A Number of observations according to the type of insecticide.
B Examples of observed number of aphids averaged over the blocks (intensity) and number of infested
beets out of ten (prevalence) averaged over the blocks, at different dates for two trials.
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• 𝑍𝑖𝑗𝑘𝑡 the number of infested plants among the 𝑁𝑖 plants collected in trial i, treatment j, block k,
at time t

Then, assuming the 𝑊s are independent, we have:

𝑌𝑖𝑗𝑘𝑡 =
𝑁𝑖

∑
𝑠=1

𝑊𝑖𝑗𝑘𝑡𝑠 𝑌𝑖𝑗𝑘𝑡 ∼ 𝒫 (𝑁𝑖𝜆𝑖𝑗𝑘𝑡) (3)

𝑍𝑖𝑗𝑘𝑡 =
𝑁𝑖

∑
𝑠=1

1𝑊𝑖𝑗𝑘𝑡𝑠>0 𝑍𝑖𝑗𝑘𝑡 ∼ ℬ(𝑁𝑖, 𝜋𝑖𝑗𝑘𝑡) (4)

where 𝜋𝑖𝑗𝑘𝑡 = 1 − exp(−𝜆𝑖𝑗𝑘𝑡). The different quantities used in the model are defined in Table 1.

Table 1: Description of the indices, inputs and parameters used in the model

i trial index
j treatment index
k block index
t time index
s plant index
𝑁𝑖 sample size (number of plants)
𝜆𝑖𝑗𝑘𝑡 mean number of pest individuals (aphids) on one plant
𝜋𝑖𝑗𝑘𝑡 probability for a plant to be infested
𝛼0 mean number of pest individuals (aphids) in the untreated group
𝛽0𝑖 trial effect
𝛾0𝑗 effect of treatment j at time 0 (time of treatment)
𝛼1 growth parameter of the number of pest individuals for the untreated group
𝛾1𝑗 effect of the treatment on the time effect (interaction between treatment j and time)
𝑋𝑡 number of days post treatment
𝑢𝑖𝑗 random interaction between trial and treatment
𝜖𝑖𝑗𝑘𝑡 residuals

From this model we define the efficacy of the 𝑗th treatment at time 𝑡 (𝑡 days after pesticide application)
by the quantity (Laurent et al. (2023)):

Ef𝑗𝑡 = (1 − exp(𝛾0𝑗 + 𝛾1𝑗 × 𝑋𝑡)) × 100 (5)

The quantity Ef𝑗𝑡 corresponds to the expected percentage reduction of pest individuals (aphid numbers)
for the j-th treatment compared to the untreated group, over trials and blocks.

Our Poisson log linear model includes an additive random dispersion term associated to each
individual observation (𝜖𝑖𝑗𝑘𝑡 in Equation 2). This is a standard and well-recognized approach to deal
with over-dispersion (Harrison (2014)). In order to check the model assumptions, we perform a
posterior predictive check of our model to check that the data were compatible with the model
assumptions (Supplementary material). Posterior predictive check is frequently used to look for
systematic discrepancies between real and simulated data (Gelman et al. (1995)). To do so, we
compute the probability of exceeding each individual data with the fitted model (Equation 2). The
computed probabilities are all falling in the range 0.22-0.93 (except for the observations equal to 0, for
which the probability of being greater was equal to 1), and are thus not extreme. This result indicates
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that the model specified is not incompatible with the observed data and that the over-dispersion
is correctly taken into account. In addition, we fit another model including a negative binomial
distribution instead of a Poisson distribution. The results are almost identical between the two
models (Supplementary material).

2.2.2 Inference on real data

The model parameters are estimated using Bayesian inference with a Markov chain Monte-Carlo
method. We perform the inference using R, with the package rjags (Plummer (2022)). For each of
the data sets listed in Table 2, we fit the model (Equation 2 - Equation 4) with the following weakly
informative priors: 𝒩 (0, 103) for the parameters 𝛼0, 𝛾0, 𝛼1, 𝛾1 and 𝒰([0, 10]) for the parameters
𝜎0, 𝜒 , 𝜂. We use two Markov chains with 2×105 iterations (after an adaptation phase of 105 iterations),
and we center the time variable 𝑡 to facilitate convergence.

The convergence of the MCMC algorithm is checked by inspecting the mixing of the two Markov
chains and monitoring the Gelman-Rubin diagnosis statistics (Gelman and Rubin (1992)). We then
compute the posterior mean of the pesticide treatment efficacy (defined by Equation 5) as well as its
95% credibility interval. The code used to fit the model is provided below.

INFO Note

The following code presents the inference on an extract of the real data set, which includes
both trials of figure 1B (2020 - B1A97 ; 2020 - u1CwE). It is a demo for the “50% Y - 50% Z”
scenario and we set here the number of adaptation and iteration to 2000 in order to reduce
computation time.

# Jags code for the model #################################################
modelstringYZ = "

model {

# Likelihood #####################################################
for (i in 1:Q){

Y[i] ~ dpois(N[i] * lb[i])
Z[i] ~ dbinom(pi[i], N[i])

log(lb[i]) = beta0[ID[i]] + gamma0[INSEC[i]] + (alpha1 +
gamma1[INSEC[i]]) * TIME[i] + u[ST[i]] + epsi[i]

pi[i] = 1 - exp(- lb[i])
epsi[i] ~ dnorm(0, pi_eps)

}

for (j in 1:K){
beta0[j] ~ dnorm(alpha0, tau0)

}

for (c in 1:M){
u[c] ~ dnorm(0, invchi)

}

gamma0[1] = 0
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gamma1[1] = 0

# Priors #########################################################
for (s in 2:L){

gamma0[s] ~ dnorm(0, 0.001)
gamma1[s] ~ dnorm(0, 0.001)

}

alpha0 ~ dnorm(0, 0.001)
alpha1 ~ dnorm(0, 0.001)
sigma0 ~ dunif(0, 10)
chi ~ dunif(0, 10)
eta ~ dunif(0, 10)

# Derived Quantities #############################################
tau0 = pow(sigma0, -2)
invchi = pow(chi, -2)
pi_eps = pow(eta, -2)

for (h in 2:L){
for(t in 1 : T){

Eff[h, t] = (1 - exp(gamma0[h] + gamma1[h] *
TIME_unique[t])) * 100

}
}

}
"

writeLines(modelstringYZ, con = "jags_models/modelYZ.txt")
############################################################################

# Inference example on the extract of the real dataset #####################
real_data_extract = readRDS(file = "data/real_data_extract.rds")

data = real_data_extract %>%
mutate(tscaled = scale(DPT), st = paste(ID, Insecticide))

# Building scenarios -------------------------------------------------------
scenarioY = data %>% mutate(Z = NA)
scenarioYhalfZhalf = data %>% mutate(Y = ifelse(ID == "2020 - B1A97", Y, NA),

Z = ifelse(ID == "2020 - B1A97", NA, Z))
scenarioYhalf = data %>% filter(ID == "2020 - B1A97") %>% mutate(Z = NA)
scenarioZhalf = data %>% filter(ID == "2020 - u1CwE") %>% mutate(Y = NA)
# ---------------------------------------------------------------------------

data = scenarioYhalfZhalf

Y = data$Y; Q = length(Y); N = data$N; Z = data$Z
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ID = as.numeric(as.factor(as.character(data$ID)));
INSEC = as.numeric(as.factor(as.character(data$Insecticide)));
TIME = as.numeric(data$tscaled);
ST = as.numeric(as.factor(as.character(data$st)));

K = length(unique(ID)); L = length(unique(INSEC));
M = length(unique(ST));

df_TIME = suppressMessages(data %>%
group_by(DPT, tscaled) %>%
summarise(n = n()) %>% as.data.frame)

TIME_unique = approx(df_TIME$DPT, df_TIME$tscaled, xout = c(6, 12))$y;
T = length(unique(TIME_unique))

data_jags = list(
"Y" = Y, "Z" = Z, "Q" = Q, "ID" = ID, "INSEC" = INSEC,
"TIME" = TIME, "ST" = ST, "K" = K, "L" = L, "M" = M,
"N" = N, "T" = T, "TIME_unique" = TIME_unique

)

nadapt = 2000; niter = 2000

model <- jags.model("jags_models/modelYZ.txt", data = data_jags,
n.chains = 2, n.adapt = nadapt)

samples <- coda.samples(model,
variable.names = c("gamma0", "gamma1", "Eff"),
n.iter = niter, thin = 10)

############################################################################

In practice, it is common that only 𝑌 or 𝑍 data are available in some of the trials. In this case, the
resulting data set includes observations of 𝑌 in some trials and observations of 𝑍 in others. The data
set may even include one type of observations only, either 𝑌 or 𝑍, in all trials. Here, we define four
scenarios with contrasted levels of 𝑌 and 𝑍 availability in order to evaluate the consequences of using
different types of data sets. We consider four data subsets defined from the real data set including
trials with observations of 𝑌, with observations of 𝑍, or with both types of observation in different
proportions (Table 2). The data subset “100% Y - 0% Z” includes Y data collected in the 32 trials. The
data subset “50% Y - 0% Z” includes Y data collected in the 17 trials for which no Z observation is
available. The data subset “0% Y - 50% Z” includes the Z data collected in the 15 trials for which Z
observations are available. The data subset “50% Y - 50% Z” includes 𝑌 data collected in 17 trials and
𝑍 data collected in the other 15 trials. The latter data subset does not include any trial reporting both
𝑌 and 𝑍 data. Throughout our analysis, missing data are assumed to be missing at random.

The hierarchical model defined above is fitted to each data set in turn. Each fitted model is then used
to compute the posterior mean and 95% credibility interval of 𝐸𝑓𝑗𝑡 for each treatment at 𝑡=6 and 12
days after pesticide application.
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Table 2: Four data subsets defined from the original data set (real data).

Type of data set Description

100% Y - 0% Z Y observations available in the 32 trials and no Z
50% Y - 0% Z Y observations available in 17 trials and no Z
0% Y - 50% Z Z observations available in 15 trials and no Y
50% Y - 50% Z Y observations available in 17 trials and Z observations

available in the other 15 trials

2.2.3 Simulations

Simulations are carried out to further investigate the impact of the type and amount of data available
on the accuracy of the parameters and the ability of the model to identify the most and least effective
treatments.

We define three numbers of trials, equal to 20, 40 and 80, successively. For data simulations, the
model parameters are set equal to those estimated from the real data set “100% Y - 0% Z” defined
in Table 2 (posterior means). For each number of trials, we generate virtual data from the model
(Equation 1 - Equation 4) and estimate the model parameters, according to the following procedure:

• Draw values of 𝛽0𝑖, 𝑢𝑖𝑗 and 𝜖𝑖𝑗𝑘𝑡 in their distributions for each trial, 3 treatments (+ the untreated
control), 3 dates (𝑡=0, 6, 12), and 4 blocks

• Calculate 𝜆𝑖𝑗𝑘𝑡 from Equation 2,
• Draw values of 𝑊𝑖𝑗𝑘𝑡𝑠 in its Poisson distribution for 10 plants (𝑠=1, …, 10)
• Calculate 𝑌𝑖𝑗𝑘𝑡 and 𝑍𝑖𝑗𝑘𝑡 from the 𝑊s for each trial, treatment, date, block.
• Generate the eight data subsets corresponding to the scenarios defined in Table 3 (including
all values of 𝑊, the generated values of 𝑌 only, the generated values of 𝑍 only, both 𝑌 and 𝑍
values but not 𝑊, the values of 𝑌 in 50% of the trials, the values of 𝑍 in 50% of the trials, the
values of 𝑌 in 50% of the trials and the values of 𝑍 in the other 50%),

• Fit the model (Equation 1 - Equation 4) to each of the data subsets according to the procedure
described above based on MCMC.

At the end of this procedure, we get eight sets of estimated parameters, corresponding to the eight
scenarios defined in Table 3. This procedure is repeated 1000 times with each time a different seed
between 0 and 999. However, the computations performed with jags failed for 26 replicates and thus
974 replicates were available for the analysis.

For each number of trials and each scenario defined in Table 3, the accuracy of the estimated
parameters 𝛾 (from which depend the treatment efficacies) is evaluated by computing an absolute
error, averaged over the three treatments (𝑗=1 corresponding to the control) as:

𝐸𝛾 =
1

2 × 3

4
∑
𝑗=2

(
|𝛾0𝑗 − ̂𝛾0𝑗|

|𝛾0𝑗|
+
|𝛾1𝑗 − ̂𝛾1𝑗|

|𝛾1𝑗|
) (6)

where the true parameter values are set equal to the posterior means computed with the real data set,
and the parameter estimates ( ̂𝛾0𝑗 and ̂𝛾1𝑗) are the posterior means computed for the j-th treatment.
For each trial number and each scenario defined in Table 3, the 974 values of 𝐸𝛾 obtained for the 974
generated data subsets are then averaged. The average values obtained for the eight scenarios are
finally compared to determine the type of data leading to the most accurate estimated parameter
values.
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In addition, we compare the eight scenarios according to another criterion measuring the difference
between the estimated efficacy values and the true efficacy value (averaged over the three pesticide
treatments considered), as follows:

𝐸Ef𝑡 = 1
3

4
∑
𝑗=2

|Ef𝑗𝑡 − ̂Ef𝑗𝑡|
|Ef𝑗𝑡|

(7)

where the true treatment efficacy is defined by Equation 5 (setting the parameters 𝛾s to the posterior
means obtained with the real data set) and the estimated efficacy ( ̂Ef𝑗𝑡) is the posterior mean computed
with the simulated data set. The 974 values of 𝐸Eft obtained from the 974 simulated data sets are
then averaged for each trial number and each scenario. Finally, we evaluate the proportions of cases
where the true best treatment (i.e., the treatment with the highest efficacy) is correctly identified.

In order to determine whether the difference of performance obtained with the types of data 𝑌 and 𝑍
depends on the pest abundance, we perform an additional series of simulations with three values
for the model parameter 𝛼0, equal to −1, 1 and 2, successively. These three values of 𝛼0 define three
contrasted levels of pest abundance (the higher 𝛼0, the higher the abundance). We used the procedure
outlined above considering only two scenarios of data availability, namely “100% Y - 0% Z” and “0%
Y - 100% Z”. This procedure is implemented with each value of 𝛼0 in turn. The results are used to
compare the model performances using either 𝑌 or 𝑍 for parameter estimation, depending of the pest
abundance specified by 𝛼0.

Table 3: Eight scenarios compared using simulated data.

Type of data set Description

100% W W observations available in all the trials
100% Y - 0% Z Y observations available in all the trials
0% Y - 100% Z Z observations available in all the trials
100% Y - 100% Z Y and Z observations available in all the trials
50% Y - 0% Z Y observations available in half of the trials
0% Y - 50% Z Z observations available in half of the trials
50% Y - 50% Z Y observations available in half of the trials and Z observations

available in the other half of the trials
50% Y - 100% Z Y observations available in half of the trials and Z observations

available in all the trials

These simulations required a significant amount of computation time and were conducted on the
INRAE MIGALE server. For a single seed and 20 trials, the computations took 80 minutes on a
computer with an Intel Core i7 processor running at 1.90 GHz and 32 GB of RAM. The code used to
perform them is presented below.

simu_data <- function(seed, I){

set.seed(seed)

ID = c(1 : I);

data = expand_grid(ID = c(1 : I), Block = c(1 : K), Band = c(1 : J),
Beet = c(1 : N), DPT = seq(0, 12, length.out = T))
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data = data %>%
mutate(Insecticide = ifelse(DPT <= 0, "T 1", paste("T", Band)),

tscaled = scale(data$DPT)) %>%
mutate(st = paste(ID, Insecticide),

sbit = paste(ID, Block, Insecticide, DPT))

Insecticide = data$Insecticide %>% unique %>% sort
names(gamma0) = Insecticide
names(gamma1) = Insecticide

beta0 = rnorm(I, sd = sig0);
u = rnorm(I * J, sd = chi);
epsi = rnorm(I * J * K * (T - 1) + I * K, sd = eta);

names(beta0) = data$ID %>% unique;
names(u) = data$st %>% unique
names(epsi) = data$sbit %>% unique

data = data %>% mutate(alpha0 = alpha0,
alpha1 = alpha1,
N = N,
beta0 = recode(ID, !!!beta0),
gamma0 = recode(Insecticide, !!!gamma0),
gamma1 = recode(Insecticide, !!!gamma1),
u = recode(st, !!!u),
epsi = recode(sbit, !!!epsi))

data$lb = exp(data$alpha0 + data$beta0 + data$gamma0 +
(data$alpha1 + data$gamma1) * data$tscaled +
data$u + data$epsi)

data$W = sapply(c(1 : (I * J * K * T * N)),
function(x) rpois(1, data$lb[x]))

dataYZ = data %>% group_by(ID, Block, Band, DPT) %>%
summarise(Insecticide = unique(Insecticide),

tscaled = unique(tscaled), st = unique(st), N = unique(N),
Y = sum(W), Z = sum(W > 0)) %>% as.data.frame

dataW = data %>% select(- alpha0, - alpha1, - beta0, - gamma0, - gamma1,
- u, - epsi, - lb)

return(list("dataYZ" = dataYZ, "dataW" = dataW))
}
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INFO Note

The following code presents the inference for one seed. As the computing time is growing fast
with the number of trials and the number of sampled values, we set here the number of trials
to 10 (I = 10) and the number of adaptations and iterations to 2000.
Our simulation results are obtained by running this code for I = 10, 20, 40, 80, for all seeds
between 0 and 999, with a number of adaptations and iterations equal to 36000.
Scenarios “50% Y - 0% Z” and “0% Y - 50% Z” are obtained from scenarios “100% Y - 0% Z” and
“0% Y - 100% Z”, respectively. For example “50% Y - 0% Z” scenario with 40 trials corresponds to
“100% Y - 0% Z” with 20 trials.

J = 4; T = 3; N = 10; K = 4;

Block = c(1 : K); Band = c(1 : J);
Beet = c(1 : N); DPT = seq(0, 12, length.out = T);

alpha0 = 0.5; gamma0 = c(0, - 0.13, - 1.13, - 1.24);
alpha1 = 0.16; gamma1 = c(0, 0.24, - 0.14, - 0.15);
sig0 = 1.87; chi = 0.27; eta = 0.98

############################################################################

# Building scenarios #######################################################
seed = 1; I = 10
data = suppressMessages(simu_data(seed = seed, I = I))

scenarios = list(
Y = data$dataYZ %>% mutate(Z = NA),
Z = data$dataYZ %>% mutate(Y = NA),
YhalfZhalf = data$dataYZ %>% mutate(Y = ifelse(ID <= (I / 2), NA, Y),

Z = ifelse(ID > (I / 2), NA, Z)),
YhalfZ = data$dataYZ %>% mutate(Y = ifelse(ID <= (I / 2), NA, Y)),
YZ = data$dataYZ,
W = data$dataW

)
#############################################################################

# Inference #################################################################
nadapt = 2000; niter = 2000

res_inf = NULL

# Inference YZ --------------------------------------------------------------
ID = as.numeric(as.factor(as.character(scenarios$Y$ID)));
INSEC = as.numeric(as.factor(as.character(scenarios$Y$Insecticide)));
TIME = as.numeric(scenarios$Y$tscaled);
ST = as.numeric(as.factor(as.character(scenarios$Y$st)));

K = length(unique(ID));
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L = length(unique(INSEC));
M = length(unique(ST))

TIME_unique = unique(scenarios$Y$tscaled)[2 : 3]
T = length(unique(TIME_unique))

for(i in (1 : 5)){
Y = scenarios[[i]]$Y; Z = scenarios[[i]]$Z;
N = scenarios[[i]]$N; Q = length(Y)

data_jags = list(
"Y" = Y, "Z" = Z, "Q" = Q, "ID" = ID, "INSEC" = INSEC,
"TIME" = TIME, "ST" = ST, "K" = K, "L" = L, "M" = M,
"N" = N, "T" = T, "TIME_unique" = TIME_unique

)

model <- jags.model("jags_models/modelYZ.txt", data = data_jags,
n.chains = 2, n.adapt = nadapt)

samples <- coda.samples(model,
variable.names = c("gamma0", "gamma1", "Eff"),
n.iter = niter, thin = 10)

bind = list(samples);
names(bind) = paste("samples", names(scenarios)[i], sep = "_")

res_inf = res_inf %>% append(bind)
}

# Inference W ---------------------------------------------------------------
ID = as.numeric(as.factor(as.character(scenarios$W$ID)));
INSEC = as.numeric(as.factor(as.character(scenarios$W$Insecticide)));
TIME = as.numeric(scenarios$W$tscaled);
ST = as.numeric(as.factor(as.character(scenarios$W$st)));
SBIT = as.numeric(as.factor(as.character(scenarios$W$sbit)))

K = length(unique(ID)); L = length(unique(INSEC));
M = length(unique(ST)); X = length(unique(SBIT))

TIME_unique = unique(scenarios$W$tscaled)[2 : 3]
T = length(unique(TIME_unique))

W = scenarios$W$W; Q = length(W)

data_jags = list(
"W" = W, "Q" = Q, "ID" = ID, "INSEC" = INSEC,
"TIME" = TIME, "ST" = ST, "SBIT" = SBIT, "K" = K, "L" = L,
"M" = M, "X" = X, "T" = T, "TIME_unique" = TIME_unique

)
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model <- jags.model("jags_models/modelW.txt", data = data_jags,
n.chains = 2, n.adapt = nadapt)

samples <- coda.samples(model,
variable.names = c("gamma0", "gamma1", "Eff"),
n.iter = niter, thin = 10)

res_inf = res_inf %>% append(list("samples_W" = samples))
############################################################################

# Formatting results #######################################################
t = scenarios$Y$tscaled %>% unique
Eff_6_true = (1 - exp(gamma0[2 : J] + gamma1[2 : J] * t[2])) * 100
Eff_12_true = (1 - exp(gamma0[2 : J] + gamma1[2 : J] * t[3])) * 100
truth = c(Eff_6_true, Eff_12_true, gamma0[2 : J], gamma1[2 : J])

n_scenarios = length(scenarios)

esti = lapply(
res_inf, function(x) summary(x)$statistics %>% as.data.frame %>%

rownames_to_column %>%
filter(!(grepl("gamma", rowname) & Mean == 0)) %>%
select(Mean) %>% as.matrix %>% as.vector

)

b_inf = lapply(
res_inf, function(x) summary(x)$quantiles %>% as.data.frame %>%

rownames_to_column %>%
filter(!(grepl("gamma", rowname) & `2.5%` == 0)) %>%
select(`2.5%`) %>% as.matrix %>% as.vector

)

b_sup = lapply(
res_inf, function(x) summary(x)$quantiles %>% as.data.frame %>%

rownames_to_column %>%
filter(!(grepl("gamma", rowname) & `2.5%` == 0)) %>%
select(`97.5%`) %>% as.matrix %>% as.vector

)

parameters = summary(res_inf[[1]])$statistics %>% as.data.frame %>%
rownames_to_column %>%
filter(!(grepl("gamma", rowname) & Mean == 0)) %>%
select(rowname) %>% as.matrix %>% as.vector

res = do.call(rbind,
lapply(c(1 : n_scenarios),

function(x)
data.frame(Truth = truth, Scenario = names(scenarios)[x],

I = I, seed = seed,
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value = esti[[x]], parameters = parameters,
b_inf = b_inf[[x]], b_sup = b_sup[[x]]

)
)

)
############################################################################

3 Results

3.1 Results obtained with real data

We present here the results obtained with real data. First, we check the convergence of the model for
the scenarios defined in Table 2. We then compare the estimated values and the credibility intervals
of the treatment efficacy obtained in the different scenarios.

3.1.1 Model convergence and posterior distributions

Figure 2 presents the Markov chains associated with the model parameters and treatment efficacies for
the different scenarios. The x-axis presents the iteration number and the y-axis presents the sampled
value. Results show that the chains are well mixed. Figure 3 presents the Gelman-Rubin statistics
associated with the model parameters and treatment efficacies as a function of the iterations, for the
different scenarios. We observe that this statistics converges to 1, which indicates the convergence
of the algorithm.

Table 4 gives a summary of the posterior distributions of the model parameters and treatment
efficacies obtained for the “100% Y - 0% Z” scenario. The significantly positive value of 𝛼1 indicates
that the aphid numbers tend to increase with time in untreated plots. The relatively high value
of 𝜎0 (posterior mean equal to 1.87) reveals a strong variability in aphid numbers between trials.
The posterior mean value of 𝜒 (0.27) suggests that the treatment efficacy varies across trials. The 𝛾0
parameter is negative for all three treatments, indicating a negative effect of the treatments on the
aphid numbers at the time of pesticide spray. The Movento and Teppeki treatments have a similar
effect with a posterior mean for 𝛾0 equal to -1.13 and -1.24, and a standard deviation equal to 0.12
and 0.11, respectively. The effect of treatment Mavrik Jet is weaker as its posterior mean for 𝛾0 is
equal to -0.13 and its standard deviation is equal to 0.16. The 𝛾1 posterior means are negative for
Movento and Teppeki (-0.14 and -0.15), suggesting that the effect of these treatments tend to increase
with time, but the posterior mean value is positive for Mavrik Jet (= 0.24), suggesting that the effect
of this treatment may decrease with time. However, the 95% credibility intervals of 𝛾1 include zero
and these parameters are not very accurately estimated.

3.1.2 Estimated values of pesticide treatment efficacies

Figure 4 presents the posterior means and the 95% credibility intervals of treatment efficacies at
6 days (A) and 12 days (B) after pesticide spray, for the “100% Y - 0% Z”, “50% Y - 50% Z”, “50% Y
- 0% Z” and “0% Y - 50% Z” scenarios. Different scenarios are indicated by different colors. The
x-axis presents the efficacy and the y-axis presents the treatments. Overall, the results obtained are
consistent across scenarios; Teppeki and Movento show higher mean efficacies than Mavrik Jet, and
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Figure 2: Model convergence - Markov chain for the model parameters and treatment efficacies, in
the scenarios “50% Y - 0% Z” (A), “50% Y - 50% Z” (B), “100% Y - 0% Z” (C) and “0% Y - 50% Z” (D).
The x-axis presents the iteration number and the y-axis presents the sampled value.

17



A

χ η Ef6 − MavrikJet Ef6 − Movento Ef6 − Teppeki Ef12 − MavrikJet Ef12 − Movento Ef12 − Teppeki

α0 α1 γ0 − MavrikJet γ0 − Movento γ0 − Teppeki γ1 − MavrikJet γ1 − Movento γ1 − Teppeki σ0

2e+05 4e+05 2e+05 4e+05 2e+05 4e+05 2e+05 4e+05 2e+05 4e+05 2e+05 4e+05 2e+05 4e+05 2e+05 4e+05

2e+05 4e+05
1

3

5

1

3

5

S
hr

in
k 

fa
ct

or

B

χ η Ef6 − MavrikJet Ef6 − Movento Ef6 − Teppeki Ef12 − MavrikJet Ef12 − Movento Ef12 − Teppeki

α0 α1 γ0 − MavrikJet γ0 − Movento γ0 − Teppeki γ1 − MavrikJet γ1 − Movento γ1 − Teppeki σ0

2e+05 4e+05 2e+05 4e+05 2e+05 4e+05 2e+05 4e+05 2e+05 4e+05 2e+05 4e+05 2e+05 4e+05 2e+05 4e+05

2e+05 4e+05
1

3

5

1

3

5

S
hr

in
k 

fa
ct

or

C

χ η Ef6 − MavrikJet Ef6 − Movento Ef6 − Teppeki Ef12 − MavrikJet Ef12 − Movento Ef12 − Teppeki

α0 α1 γ0 − MavrikJet γ0 − Movento γ0 − Teppeki γ1 − MavrikJet γ1 − Movento γ1 − Teppeki σ0

2e+05 4e+05 2e+05 4e+05 2e+05 4e+05 2e+05 4e+05 2e+05 4e+05 2e+05 4e+05 2e+05 4e+05 2e+05 4e+05

2e+05 4e+05
1

3

5

1

3

5

S
hr

in
k 

fa
ct

or

D

χ η Ef6 − MavrikJet Ef6 − Movento Ef6 − Teppeki Ef12 − MavrikJet Ef12 − Movento Ef12 − Teppeki

α0 α1 γ0 − MavrikJet γ0 − Movento γ0 − Teppeki γ1 − MavrikJet γ1 − Movento γ1 − Teppeki σ0

2e+05 4e+05 2e+05 4e+05 2e+05 4e+05 2e+05 4e+05 2e+05 4e+05 2e+05 4e+05 2e+05 4e+05 2e+05 4e+05

2e+05 4e+05
1

3

5

1

3

5

S
hr

in
k 

fa
ct

or

Last iteration in chain

97.5% median

Figure 3: Model convergence - Gelman-Rubin statistics for the parameters of the model (Equation 1 -
Equation 4) and for treatment efficacies (Equation 5), according to the scenarios “50% Y - 0% Z” (A),
“50% Y - 50% Z” (B), “100% Y - 0% Z” (C) and “0% Y - 50% Z” (D). The x-axis presents the iteration
number and the y-axis presents the Gelman-Rubin statistic.
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Table 4: Summary of the posterior distributions obtained with the “100% Y - 0% Z” scenario for the
model parameters and treatment efficacies: posterior mean, standard deviation, 2.5 and 97.5 quantiles.

Parameter Mean SD 2.5% 97.5%

α₀ 0.49 0.34 -0.19 1.17
α₁ 0.16 0.06 0.04 0.29
σ₀ 1.87 0.26 1.44 2.46
χ 0.28 0.06 0.15 0.40
η 0.98 0.03 0.92 1.03
γ₀ - untreated 0.00 0.00 0.00 0.00
γ₀ - Mavrik Jet -0.12 0.17 -0.46 0.20
γ₀ - Movento -1.13 0.12 -1.37 -0.88
γ₀ - Teppeki -1.24 0.11 -1.46 -1.02
γ₁ - untreated 0.00 0.00 0.00 0.00
γ₁ - Mavrik Jet 0.24 0.13 -0.01 0.49
γ₁ - Movento -0.15 0.10 -0.33 0.04
γ₁ - Teppeki -0.15 0.09 -0.32 0.02

the credibility intervals are narrower for Teppeki and Movento than for Mavrik Jet in all scenarios.
The credibility interval of the “100% Y - 0% Z” scenario is narrower than that of the “50% Y - 50% Z”
scenario, which is itself narrower than that of the “50% Y - 0% Z” and “0% Y - 50% Z” scenarios. Overall,
the credibility interval sizes obtained with the “100% Y - 0% Z” scenario are 25% to 45% smaller than
those obtained with the “50% Y - 0% Z” scenario (Table 5), aligning with the principle that increased
data availability leads to more precise estimates. Results also indicate that credibility intervals are
frequently larger with “0% Y - 50% Z” than with “50% Y - 0% Z,” suggesting that more accurate
estimates are achievable using Y compared to Z, at least in this specific case study. Interestingly, the
sizes of the credibility intervals are approximately 25% smaller with “50% Y - 50% Z” compared to
“50% Y - 0% Z,” demonstrating that the combination of Y and Z observations collected from distinct
trials proves beneficial and results in a reduction of uncertainty in the estimated treatment efficacy.
This finding underscores the potential enhancement of treatment efficacy estimation through the
combination of trials incorporating prevalence data and those incorporating intensity data.

3.2 Results obtained by simulation

3.2.1 Interest of combining trials with prevalence and trials with intensity

In this section, we consider the situation where only one type of observation is available per trial
- pest prevalence or pest intensity. We compare the accuracy of the estimated parameters and
estimated levels of treatment efficacy obtained by combining both types of trials compared to the
results obtained using each set of trials separately.

The parameters used to generate the data are given in Table 6.

Figure 5 represents the 𝐸𝛾 (Equation 6) (A), 𝐸𝐸𝑓6 (Equation 7) (B) and 𝐸𝐸𝑓12 (Equation 7) (C) evaluation
criteria for the “0% Y - 50% Z”, “50% Y - 0% Z” and “50% Y - 50% Z” scenarios (different scenarios are
indicated by different colors). The x-axis presents the number of trials and the y-axis the value of the
criterion, averaged over the simulated data sets. For each number of trials and for each criterion, we
observe that scenario “50% Y - 50% Z” gives a more accurate estimate than scenario “50% Y - 0% Z”
which itself gives a more accurate estimate than scenario “0% Y - 50% Z”. For example, for the efficacy
at 6 days with 40 trials, the mean absolute error of scenario “50% Y - 0% Z” is 10% less than the mean
absolute error of scenario “0% Y - 50% Z” (0.38 vs 0.42). The mean absolute error of scenario “50% Y -
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Figure 4: Estimated treatment efficacies after 6 days (A) and after 12 days (B), with their credibility
intervals. Colors correspond to the different scenarios.

Table 5: Differences in the sizes of the 95 credibility intervals (CI) of the estimated treatment efficacies
for the scenarios “50% Y - 50% Z”, “0% Y - 50% Z” and “100% Y - 0% Z”, compared to “50% Y - 0% Z”.
The difference is given in percentage. A positive (negative) value indicates an increase (decrease) of
the credibility interval size. The third column indicates differences for the efficacy at 6 days after
pesticide spray, and the fourth column indicates the difference for the efficacy at 12 days.

Insecticide Data For efficacy at 6 days For efficacy at 12 days

Mavrik Jet 0% Y - 50% Z 26.7 -19.1
Movento 0% Y - 50% Z 0.8 -9.8
Teppeki 0% Y - 50% Z 44.4 16.9
Mavrik Jet 100% Y - 0% Z -27.7 -41.3
Movento 100% Y - 0% Z -40.5 -46.7
Teppeki 100% Y - 0% Z -25.6 -37.8
Mavrik Jet 50% Y - 50% Z -18.4 -31.1
Movento 50% Y - 50% Z -27.1 -31.4
Teppeki 50% Y - 50% Z -12.1 -22.4

Table 6: Parameters used to generate virtual data

Parameters α₀ α₁ γ₀₀ γ₀₁ γ₀₂ γ₀₃ γ₁₀ γ₁₁ γ₁₂ γ₁₃ σ₀ η χ
Values 0.50 0.16 0.00 -0.13 -1.13 -1.24 0.00 0.24 -0.14 -0.15 1.87 0.98 0.27
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50% Z” is 35% less than that of scenario “0% Y - 50% Z” (0.26 vs 0.42). The values of the three criteria
decrease with the number of trials. The 𝐸𝛾 criterion decreases from 0.62 with 20 trials to 0.32 with 80
trials for the “50% Y - 50% Z” scenario. A value of 20 trials is therefore not sufficient to obtain an
accurate estimate of the parameters.
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Figure 5: Values of the 𝐸𝛾 (Equation 6) (A), 𝐸𝐸𝑓6 (Equation 7) (B) and 𝐸𝐸𝑓12 (Equation 7) (C) mean
absolute error criteria for the “0% Y - 50% Z”, “50% Y - 0% Z” and “50% Y - 50% Z” scenarios. The
x-axis presents the number of trials and the y-axis presents the mean absolute error, averaged over
the 974 simulated data sets. Different colors correspond to different scenarios.

Figure 6 presents the percentages of cases where the best treatment at 6 days (A) and 12 days (B)
has been correctly identified for the “50% Y - 0% Z”, “0% Y - 50% Z” and “50% Y - 50% Z” scenarios.
The x-axis presents the number of trials and the y-axis the percentage of cases where the treatment
identification is correct. In general, the best treatment is better identified when the number of trials
increases. With the “50% Y - 50% Z” scenario, the best treatment at 6 days is well identified in 69% of
cases with 20 trials and in 85% of cases with 80 trials. For each number of trials, the percentage of
correctly identification is higher for the “50% Y - 50% Z” scenario than for the other two, and the
scenario “50% Y - 0% Z” generally gives better results than the scenario “0% Y - 50% Z”, except at
6 days with 20 trials. For example, at 12 days after treatment and with 40 trials, the percentage of
correct identification is 5% higher with scenario “50% Y - 50% Z” than with scenario “50% Y - 0% Z”
(78 vs 73), and 4% higher with the scenario “50% Y - 0% Z” than with scenario “0% Y - 50% Z” (73 vs
69). These results show the interest of combining prevalence and intensity data for assessing the
efficacy of treatments and identifying the best treatments.

3.2.2 Interest of adding intensity when prevalence is measured in all trials

We now consider a situation where prevalence is measured in each trial and intensity is measured in
only some of these trials. We compare the results obtained when the data are combined and when
they are used separately. As the prevalence data are usually more accessible in practice and the
intensity data more costly, it is important to evaluate the interest of adding intensity data in the
statistical analysis.

The parameters used to generate the data are the same as in 3.2.1.

Figure 7 presents the evaluation criteria 𝐸𝛾 (Fig 7A), 𝐸𝐸𝑓6 (Fig 7B) and 𝐸𝐸𝑓12 (Fig. 7C) for the scenarios
“0% Y - 100% Z”, “50% Y - 0% Z”, “50% Y - 100% Z” and “50% Y - 50% Z”. The x-axis presents the number
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Figure 6: Comparison of proportion cases where the best treatment is correctly identified in the
“0% Y - 50% Z”, “50% Y - 0% Z” and “50% Y - 50% Z” scenarios. The x-axis represents the number of
trials and the y-axis represents the percentage of cases where the best treatment has been correctly
identified at 6 days (A) and 12 days (B), over the 974 simulated data sets. Different colors correspond
to different scenarios.

of trials and the y-axis presents the value of the criterion, averaged over the number of simulated
data sets. Results show that the mean absolute errors are lower in scenarios “50% Y - 100% Z” and
“50% Y - 50% Z” than in “0% Y - 100% Z”, and that the mean absolute errors are lower in the “0%
Y - 100% Z” scenario than in the “50% Y - 0% Z” scenario. For example, considering the treatment
efficacy at 12 days with 40 trials (Fig. 7C), the mean absolute errors are 13% lower in scenarios “50%
Y - 100% Z” and “50% Y - 50% Z” than in “0% Y - 100% Z” (0.30 vs 0.34), and the mean absolute error is
11% lower in “0% Y - 100% Z” than in “50% Y - 0% Z” (0.34 vs 0.38). Clearly, adding intensity data to
prevalence data improves the accuracy of the estimations. The mean absolute errors decrease with
the number of trials. For example, the 𝐸𝛾 criterion decreases from 0.62 with 20 trials to 0.32 with 80
trials for the “50% Y - 50% Z” scenario. As noted above, 20 trials is clearly not sufficient to obtain
accurate results.

3.2.3 Is it better to measure intensity or prevalence in new pest surveys?

In order to optimize the design of new pest surveys that might be conducted in the future, we
determine which type of observations should be favored. For that purpose, we compare the results
obtained with the “100% Y - 0% Z”, “0% Y - 100% Z”, “100% Y / 100% Z” and “100% W” scenarios (recall
that W represents the unobserved number of aphids on each plant in the sample (Equation 1)), for
different values of 𝛼0 that defines the average number of infested plants. With 𝛼0 = -1, the proportion
of infested plants is generally much lower than one, while with 𝛼0 = 2, 100% of plants are generally
infested. The case 𝛼0 = 1 leads to intermediate levels of infestation.

The three parameter sets used to generate the data are given in Table 7 and are labeled A, B and C.

Figure 8 (A.1, B.1 and C.1) shows the mean absolute error 𝐸𝛾 (Equation 6) as a function of the number
of trials for the four scenarios “100% Y - 0% Z”, “0% Y - 100% Z”, “100% Y / 100% Z” and “100% W”.
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Figure 7: Values of 𝐸𝛾 (Equation 6) (A), 𝐸𝐸𝑓6 (Equation 7) (B) and 𝐸𝐸𝑓12 (Equation 7) (C) for the “0% Y
- 100% Z”, “50% Y - 0% Z”, “50% Y - 100% Z” and “50% Y - 50% Z” scenarios. The x-axis presents the
number of trials and the y-axis presents the absolute error averaged over the 974 simulated data sets.
Different colors correspond to different scenarios.

Table 7: Parameters considered for the design of future pest surveys.”

Set α₀ α₁ γ₀₀ γ₀₁ γ₀₂ γ₀₃ γ₁₀ γ₁₁ γ₁₂ γ₁₃ σ₀ η χ
A -1.00 0.16 0.00 -0.13 -1.13 -1.24 0.00 0.24 -0.14 -0.15 1.87 0.98 0.27
B 1.00 0.16 0.00 -0.13 -1.13 -1.24 0.00 0.24 -0.14 -0.15 1.87 0.98 0.27
C 2.00 0.16 0.00 -0.13 -1.13 -1.24 0.00 0.24 -0.14 -0.15 1.87 0.98 0.27
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Figure 8 (A.2, B.2 and C.2) shows the distributions of infested plants with 40 trials corresponding to
the three values of 𝛼0 reported in Table 7. In case A (Table 7), the distribution of Z is such that Z
is rarely close to 1 and often lower than 0.5 (Figure 8 A.2). In case C, the distribution of Z is such
that Z is often very close to 1 (100% of plants infested). Case B is intermediate. The accuracy of
the estimated values of the model parameters 𝛾 is better with scenario “100% Y - 0% Z” than with
scenario “0% Y - 100% Z”, for all number of trials. The advantage of “100% Y - 0% Z” is stronger in
case of high pest prevalence (i.e., cases B and C) but very small in case of low pest prevalence (case
A). For example, with 20 trials, the mean absolute error is 27% lower in the scenario “100% Y - 0%
Z” than in “0% Y - 100% Z” for parameter set C (0.55 vs. 0.75), 10% lower for parameter set B (0.55
vs. 0.62), and not different for parameter set A (0.64). The “100% W” scenario leads to similar results
as “100% Y - 0% Z”, regardless of 𝛼0 and the number of trials. Results obtained with “100% Y / 100% Z”
are generally similar to those obtained with “100% Y - 0% Z” and “100% W” but better than those
obtained with the scenario “0% Y - 100% Z” in cases B and C. Here again, results show that 20 trials
are not sufficient to obtain accurate parameter estimates.

4 Conclusion

In order to evaluate pest treatment efficacy, numerous trials are conducted to monitor pest prevalence
and intensity. Quite often, only one type of data is available and, when both prevalence and intensity
are available, they are usually analysed separately. In this paper, we propose an alternative approach
based on a hierarchical statistical model able to analyze intensity and prevalence data, simultaneously.

We successfully apply the model to a real data set including prevalence and incidence data collected
to evaluate three pesticide treatments against aphids in sugar beets. The model is fitted to this data
set using a Markov chain Monte Carlo algorithm, and convergence was quickly achieved after a
few thousands iterations. Results show that the use of both prevalence and intensity data led to a
substantial reduction of the uncertainty in the parameter estimates, compared to the use of a single
type of data.

Results obtained from simulated data confirm that, when pest prevalence and pest intensity are
collected separately in different trials, the model parameters are more accurately estimated combining
both prevalence and intensity trials than using one type of trials only. We also find that, when
prevalence data are collected in all trials and intensity data are collected in a subset of trials, estima-
tions and pest treatment ranking are more accurate using both types of data than using prevalence
data only. Moreover, when only one type of observation can be collected in a pest survey or in
an experimental trial, our analysis indicates that it is usually better to collect intensity data than
prevalence data, especially in situations where all or most of the plants are expected to be infested.
Finally, our simulations show that it is unlikely to obtain accurate results with fewer than 40 trials
when assessing the efficacy of pest control treatments based on prevalence and intensity data.

Although our framework is illustrated to compare the efficacy of plant pest treatments, it could be
applied to other areas of research in the future, in particular for optimizing designs used in animal
and human epidemiology. It is imperative to note that the ultimate selection of a design should be
contingent upon the consideration of local constraints. As the model codes are made fully available,
we believe that these codes could be used by different institutes to compare many different designs
in the future, not only the types of designs considered in our paper. Of particular significance is
the capability of our model to optimize sample sizes, with its impact contingent on the relative
importance of within-trial variability compared to between-trial variability.

24



Type 0% Y − 100% Z 100% W 100% Y − 0% Z 100% Y − 100% Z

C.1

B.1

A.1

20 40 60 80

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

Number of trials

M
ea

n 
re

la
tiv

e 
ab

so
lu

te
 e

rr
or

 fo
r 

γ

C.2

B.2

A.2

0.0 2.5 5.0 7.5 10.0

0

500

1000

0

500

1000

0

500

1000

Number of infested beets

N
um

be
r 

of
 o

bs
er

va
tio

ns

Figure 8: Comparison of the “100% Y - 0% Z”, “0% Y - 100% Z”, “100% Y / 100% Z” and “100% W”
scenarios according to the distribution of 𝑍 and the number of trials, using the 𝐸𝛾 criterion (Equation 6).
A, B and C correspond to different 𝑍 distributions which are given by A.2, B.2 and C.2 (distribution
for a number of trials equal to 40). A, B and C respectively correspond to 𝛼0 = -1, 1 and 2. The details
of the simulation parameters are given in Table 7. A1, B1 and C1 represent the absolute error 𝐸𝛾
averaged over the 974 simulated data sets as a function of the number of trials. Colors correspond to
the different scenarios.
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Supplementary material

Model adjustment and comparison to the negative binomial model

To check the model’s fit to the data, we performed a posterior predictive check of our model to check
that the data were compatible with the model assumptions. To do so, we computed the probability of
exceeding each individual data with the fitted model (2). Note that the number of pest individuals per
plant are not available in practice; the data correspond to observed numbers of pest individuals for
groups of 𝑁𝑖 plants. Based on the posterior probability check (Figure 9), the computed probabilities
were all falling in the range 0.22-0.93 (except for the observations equal to 0, for which the probability
of being greater was equal to 1), and were thus not extreme. This result indicates that the model
specified is not incompatible with the observed data and that the over-dispersion was correctly taken
into account.

We also fitted a newmodel including a negative binomial distribution instead of a Poisson distribution.
The results were almost identical between both types of model (Figure 10).
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