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Abstract

We propose a dimension reduction strategy in order to improve the performance of impor-
tance sampling in high dimensions. The idea is to estimate variance terms in a small number of
suitably chosen directions. We first prove that the optimal directions, i.e., the ones that mini-
mize the Kullback–Leibler divergence with the optimal auxiliary density, are the eigenvectors
associated with extreme (small or large) eigenvalues of the optimal covariance matrix. We then
perform extensive numerical experiments showing that as dimension increases, these directions
give estimations which are very close to optimal. Moreover, we demonstrate that the estimation
remains accurate even when a simple empirical estimator of the covariance matrix is used to
compute these directions. The theoretical and numerical results open the way for different
generalizations, in particular the incorporation of such ideas in adaptive importance sampling
schemes.
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1 Introduction

Importance Sampling (IS) is a stochastic method to estimate integrals of the form ℰ = ∫ 𝜙(x)𝑓 (x)dx
with a black-box function 𝜙 and a probability density function (pdf) 𝑓. It rests upon the choice of
an auxiliary density which can significantly improve the estimation compared to the naive Monte
Carlo (MC) method (Agapiou et al. 2017), (Owen and Zhou 2000). The theoretical optimal IS density,
also called zero-variance density, is defined by 𝜙𝑓 /ℰ when 𝜙 is a positive function. This density
is not available in practice as it involves the unknown integral ℰ, but a classical strategy consists
in searching for an optimal approximation in a parametric family of densities. By minimising a
“distance” to the optimal IS density, such as the Kullback–Leibler divergence, one can find optimal
parameters in this family to get an efficient sampling pdf. Adaptive Importance Sampling (AIS)
algorithms, such as the Mixture Population Monte Carlo method (Cappé et al. 2008), the Adaptive
Multiple Importance Sampling method (Cornuet et al. 2012), or the Cross Entropy method (Rubinstein
and Kroese 2011a), estimate the optimal parameters adaptively by updating at intermediate levels
(Bugallo et al. 2017).

These techniques work very well, but only for moderate dimensions. In high dimensions, most of
these techniques fail to give suitable parameters for two reasons:

1. the weight degeneracy problem, for which the self-normalized likelihood ratios (weights)
in the IS densities degenerate in the sense that the largest one takes all the mass, while all
other weights are negligible so that the final estimation essentially uses only one sample. See
for instance (Bengtsson, Bickel, and Li 2008) for a theoretical analysis in the related context
of particle filtering. The conditions under which importance sampling is applicable in high
dimensions are notably investigated in a reliability context in (Au and Beck 2003): it is remarked
that the optimal covariance matrix should not deviate significantly from the identity matrix.
(El-Laham, Elvira, and Bugallo 2019) tackle the weight degeneracy problem by applying a
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recursive shrinkage of the covariance matrix, which is constructed iteratively with a weighted
sum of the sample covariance estimator and a biased, but more stable, estimator;

2. the intricate estimation of distribution parameters in high dimensions and particularly co-
variance matrices, whose size increases quadratically in the dimension (Ashurbekova et al.
2020),(Ledoit and Wolf 2004). Empirical covariance matrix estimate has notably a slow conver-
gence rate in high dimensions (Fan, Fan, and Lv 2008). For that purpose, dimension reduction
techniques can be applied. The idea was recently put forth to reduce the effective dimension
by only estimating these parameters (in particular the covariance matrix) in suitable directions
(El Masri, Morio, and Simatos 2021), (Uribe et al. 2021). In this paper we delve deeper into this
idea.

Themain contribution of the present paper is to identify the optimal directions in the fundamental case
when the parametric family is Gaussian, and perform numerical simulations in order to understand
how they behave in practice. In particular, we propose directions which, in contrast to the recent
paper (Uribe et al. 2021), do not require the objective function to be differentiable, and moreover
optimizes the Kullback–Leibler distance with the optimal density instead of simply an upper bound
on it, as in (Uribe et al. 2021). In Section 3.1 we elaborate in more details on the differences between
the two approaches.

The paper is organised as follows: in Section 2 we recall the foundations of IS. In Section 3, we state
our main theoretical result and we compare it with the current state-of-the-art. The proof of our
theoretical result are given in Appendix; Section 4 introduces the numerical framework that we
have adopted, and Section 5 presents the numerical results obtained on five different test cases to
assess the efficiency of the directions that we propose. We conclude in Section 6 with a summary
and research perspectives.

2 Importance Sampling

We consider the problem of estimating the following integral:

ℰ = 𝔼𝑓(𝜙(X)) = ∫ 𝜙(x)𝑓 (x)dx,

where X is a random vector in ℝ𝑛 with standard Gaussian pdf 𝑓, and 𝜙 ∶ ℝ𝑛 → ℝ+ is a real-valued,
non-negative function. The function 𝜙 is considered as a black-box function which is potentially
expensive to evaluate, and this means that the number of calls to 𝜙 should be limited.

IS is an approach used to reduce the variance of the classical Monte Carlo estimator of ℰ. The idea of
IS is to generate a random sample X1, … ,X𝑁 from an auxiliary density 𝑔, instead of 𝑓, and to compute
the following estimator:

ℰ̂𝑁 = 1
𝑁

𝑁
∑
𝑖=1

𝜙(X𝑖)𝐿(X𝑖), (1)

with 𝐿 = 𝑓 /𝑔 the likelihood ratio, or importance weight, and the auxiliary density 𝑔, also called
importance sampling density, is such that 𝑔(x) = 0 implies 𝜙(x)𝑓 (x) = 0 for every x (which makes
the product 𝜙𝐿 well-defined). This estimator is consistent and unbiased but its accuracy strongly
depends on the choice of the auxiliary density 𝑔. It is well known that the optimal choice for 𝑔 is
(Bucklew 2013)

𝑔∗(x) =
𝜙(x)𝑓 (x)

ℰ
, x ∈ ℝ𝑛.

Indeed, for this choice we have 𝜙𝐿 = ℰ and so ℰ̂𝑁 is actually the deterministic estimator ℰ. For
this reason, 𝑔∗ is sometimes called zero-variance density, a terminology that we will adopt here.
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Of course, 𝑔∗ is only of theoretical interest as it depends on the unknown integral ℰ. However, it
gives an idea of good choices for the auxiliary density 𝑔, and we will seek to approximate 𝑔∗ by an
auxiliary density that minimizes a distance between 𝑔∗ and a given parametric family of densities.

In this paper, the parametric family of densities is the Gaussian family {𝑔m, ∶ m ∈ ℝ𝑛, ∈ 𝒮+
𝑛 }, where

𝑔m, denotes the Gaussian density with meanm ∈ ℝ𝑛 and covariance matrix ∈ 𝒮+
𝑛 with 𝒮+

𝑛 ⊂ ℝ𝑛×𝑛
the set of symmetric, positive-definite matrices:

𝑔m,(x) =
1

(2𝜋)𝑛/2||1/2
exp (−1

2
(x −m)⊤−1(x −m)) , x ∈ ℝ𝑛.

with || the determinant of . Moreover, we will consider the Kullback–Leibler (KL) divergence to
measure a “distance” between 𝑔∗ and 𝑔m,. Recall that for two densities 𝑓 and ℎ, with 𝑓 absolutely
continuous with respect to ℎ, the KL divergence 𝐷(𝑓 , ℎ) between 𝑓 and ℎ is defined by:

𝐷(𝑓 , ℎ) = 𝔼𝑓 [log (
𝑓 (X)
ℎ(X)

)] = ∫ log (
𝑓 (x)
ℎ(x)

) 𝑓 (x)dx.

Thus, our goal is to approximate 𝑔∗ by 𝑔m∗,∗ with the optimal mean vector m∗ and the optimal
covariance matrix ∗ given by:

(m∗, ∗) = argmin {𝐷(𝑔∗, 𝑔m,) ∶ m ∈ ℝ𝑛, ∈ 𝒮+
𝑛 } . (2)

This optimization is in general convex and differentiable with respect to m and . Moreover, the
solution of Equation 2 can be computed analytically by cancelling the gradient. In the Gaussian
case, it is thus proved that m∗ and ∗ are simply the mean and variance of the zero-variance density
(Rubinstein and Kroese 2011b), (Rubinstein and Kroese 2017a):

m∗ = 𝔼𝑔∗(X) and ∗ = Var𝑔∗ (X) . (3)

3 Efficient dimension reduction

3.1 Projecting onto a low-dimensional subspace

As 𝑔∗ is unknown, the optimal parametersm∗ and ∗ given by Equation 3 are not directly computable.
However, we can sample from the optimal density as it is known up to a multiplicative constant.
Therefore, usual estimation schemes start with estimatingm∗ and ∗, say through m̂∗ and ̂∗, respec-
tively, and then use these approximations to estimate ℰ through Equation 1 with the auxiliary density
𝑔m̂∗,̂∗ . Although the estimation of ℰ with the auxiliary density 𝑔m∗,∗ usually provides very good
results, it is well-known that in high dimensions, the additional error induced by the estimations of
m∗ and ∗ severely degrades the accuracy of the final estimation (Papaioannou, Geyer, and Straub
2019), (Uribe et al. 2021). The main problem lies in the estimation of ∗ which, in dimension 𝑛, involves
the estimation of a quadratic (in the dimension) number of terms, namely 𝑛(𝑛 + 1)/2. Recently, the
idea to overcome this problem by only evaluating variance terms in a small number of influential
directions was explored in (El Masri, Morio, and Simatos 2021) and (Uribe et al. 2021). In these two
papers, the auxiliary covariance matrix is modeled in the form

=
𝑘
∑
𝑖=1

(𝑣𝑖 − 1)d𝑖d⊤𝑖 + 𝐼𝑛 (4)

where the d𝑖’s are the 𝑘 orthonormal directions which are deemed influential. It is easy to check that
is the covariance matrix of the Gaussian vector

𝑣1/21 𝑌1d1 + ⋯ + 𝑣1/2𝑘 𝑌𝑘d𝑘 + 𝑌𝑘+1d𝑘+1 + ⋯ + 𝑌𝑛d𝑛
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where the 𝑌𝑖’s are i.i.d. standard normal random variables (one-dimensional), and the 𝑛 − 𝑘 vectors
(d𝑘+1, … ,d𝑛) complete (d1, … ,d𝑘) into an orthonormal basis. In particular, 𝑣𝑖 is the variance in the
direction of d𝑖, i.e., 𝑣𝑖 = d⊤𝑖 d𝑖. In Equation 4, 𝑘 can be considered as the effective dimension in which
variance terms are estimated. In other words, in (El Masri, Morio, and Simatos 2021) and (Uribe et al.
2021), the optimal variance parameter is not sought in 𝒮+

𝑛 as in Equation 2, but rather in the subset
of matrices of the form

ℒ𝑛,𝑘 = {
𝑘
∑
𝑖=1

(𝛼𝑖 − 1)
d𝑖d⊤𝑖
‖d𝑖‖2

+ 𝐼𝑛 ∶ 𝛼1, … , 𝛼𝑘 > 0 and the d𝑖’s are orthogonal} .

The relevant minimization problem thus becomes

(m∗
𝑘 ,

∗
𝑘) = argmin {𝐷(𝑔∗, 𝑔m,) ∶ m ∈ ℝ𝑛, ∈ ℒ𝑛,𝑘} (5)

instead of Equation 2, with the effective dimension 𝑘 being allowed to be adjusted dynamically. By
restricting the space in which the variance is assessed, one seeks to limit the number of variance
terms to be estimated. The idea is that if the directions are suitably chosen, then the improvement of
the accuracy due to the smaller error in estimating the variance terms will compensate the fact that
we consider less candidates for the covariance matrix. In (El Masri, Morio, and Simatos 2021), the
authors consider 𝑘 = 1 and d1 = m∗/‖m∗‖. When 𝑓 is Gaussian, this choice is motivated by the fact
that, due to the light tail of the Gaussian random variable and the reliability context, the variance
should vary significantly in the direction of m∗ and so estimating the variance in this direction can
bring information. In Section 3.5, we use the techniques of the present paper to provide a stronger
theoretical justification of this choice, see Theorem 3.2 and the discussion following it. The method
in (Uribe et al. 2021) is more involved: 𝑘 is adjusted dynamically, while the directions d𝑖 are the
eigenvectors associated to the largest eigenvalues of a certain matrix. They span a low-dimensional
subspace called Failure-Informed Subspace, and the authors in (Uribe et al. 2021) prove that this
choice minimizes an upper bound on the minimal KL divergence. In practice, this algorithm yields
very accurate results. However, we will not consider it further in the present paper for two reasons.
First, this algorithm is tailored for the reliability case where 𝜙 = 𝕀{𝜑≥0}, with a function 𝜑 ∶ ℝ𝑛 → ℝ,
whereas our method is more general and applies to the general problem of estimating an integral
(see for instance our test case of Section 5.5). Second, the algorithm in (Uribe et al. 2021) requires the
evaluation of the gradient of the function 𝜑. However, this gradient is not always known and can be
expensive to evaluate in high dimensions; in some cases, the function 𝜑 is even not differentiable,
as will be the case in our numerical example in Section 5.4. In contrast, our method makes no
assumption on the form or smoothness of 𝜙: it does not need to assume that it is of the form 𝕀{𝜑≥0},
or to assume that ∇𝜑 is tractable. For completeness, whenever the algorithm of (Uribe et al. 2021)
was applicable and computing the gradient of 𝜑 did not require any additional simulation budget,
we have run it on the test cases considered here and found that it outperformed our algorithm. In
more realistic settings, computing ∇𝜑 would likely increase the simulation budget, and it would be
interesting to compare the two algorithms in more details to understand when this extra computation
cost is worthwhile. We reserve such a question for future research and will not consider the algorithm
of (Uribe et al. 2021) further, as our aim in this paper is to establish benchmark results for a general
algorithm which works for any function 𝜙.

3.2 Definition of the function ℓ

The statement of our result involves the following function ℓ, which is represented in Figure 1:

ℓ ∶ 𝑥 ∈ (0,∞) ↦ − log(𝑥) + 𝑥 − 1. (6)

In the following, (𝜆, d) ∈ ℝ×ℝ𝑛 is an eigenpair of a matrix 𝐴 if 𝐴d = 𝜆d and ‖d‖ = 1. A diagonalizable
matrix has 𝑛 distinct eigenpairs, say ((𝜆𝑖, d𝑖), 𝑖 = 1, … , 𝑛), and we say that these eigenpairs are ranked

5



in decreasing ℓ-order if ℓ(𝜆1) ≥ ⋯ ≥ ℓ(𝜆𝑛). In the rest of the article, we denote as (𝜆∗𝑖 ,d∗𝑖 ) the
eigenpairs of ∗ ranked in decreasing ℓ-order and as (�̂�∗𝑖 , ̂d∗𝑖 ) the eigenpairs of ̂∗ ranked in decreasing
ℓ-order.

0 1 2 3
x

0.0

0.5

1.0

1.5
(x

)

Figure 1: Plot of the function ℓ given by Equation 6.

3.3 Main result of the paper

The main result of the present paper is to compute the exact value for ∗𝑘 in Equation 5, which therefore
paves the way for efficient high-dimensional estimation schemes.

Theorem 3.1. Let (𝜆∗𝑖 ,d∗𝑖 ) be the eigenpairs of ∗ ranked in decreasing ℓ-order. Then for 1 ≤ 𝑘 ≤ 𝑛, the
solution (m∗

𝑘 ,
∗
𝑘) to Equation 5 is given by

m∗
𝑘 = m∗ and ∗

𝑘 = 𝐼𝑛 +
𝑘
∑
𝑖=1

(𝜆∗𝑖 − 1)d∗𝑖 (d∗𝑖 )⊤. (7)

The proof of Theorem 3.1 is detailed in Appendix A. For 𝑘 = 1 for instance, the matrix ∗
1 = 𝐼𝑛 + (𝜆∗1 −

1)d∗1(d∗1)⊤ with (𝜆∗1 ,d∗1) the eigenpair of ∗ such as 𝜆∗1 is either the largest or the smallest eigenvalue
of ∗, depending on which one maximizes ℓ.

This theoretical result therefore suggests to reduce dimension by computing the covariance matrix ̂∗
and its eigenpairs, rank them in decreasing ℓ-order and then use the 𝑘 first eigenpairs ((�̂�∗𝑖 , ̂d∗𝑖 ), 𝑖 =
1, … , 𝑘) to build the covariance matrix ̂∗𝑘 = ∑𝑘

𝑖=1(�̂�
∗
𝑖 − 1) ̂d∗𝑖 ( ̂d∗𝑖 )⊤ + 𝐼𝑛 and the corresponding auxiliary

density. This scheme is summarized in Algorithm 1. The effective dimension 𝑘 is obtained by
Algorithm 2, see Section 3.4 below. The proof of the theorem is shown in Appendix A.

Remark. Since the function ℓ is minimized at 1, eigenpairs with 𝜆∗𝑖 = 1 are selected in the sum of
Equation 7 once all other eigenpairs have been picked as the eigenpairs are ℓ-ordered: in other words,
if 𝜆∗𝑖 = 1 then 𝜆∗𝑗 = 1 for all 𝑗 ≥ 𝑖. Note also that the minimizer 1 plays a special role as we are
interested in covariance matrices ofℒ𝑛,𝑘 which, once diagonalized, have mostly ones in the main
diagonal (except for k values associated with the 𝛼𝑖). As 𝑘 will be small (See Section 3.4), typically
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Algorithm 1 Algorithm suggested by Theorem 1.

1: Data: Sample sizes 𝑁 and 𝑀
2: Result: Estimation ℰ̂𝑁 of integral ℰ
3: - Generate a sample X∗

1 , … ,X∗
𝑀 on ℝ𝑛 independently according to 𝑔∗

4: - Estimate m̂∗ and ̂∗ defined in Equation 8 and Equation 9 with this sample
5: - Compute the eigenpairs (�̂�∗𝑖 , ̂d∗𝑖 ) of ̂∗ ranked in decreasing ℓ-order
6: - Compute the matrix ̂∗𝑘 = ∑𝑘

𝑖=1(�̂�
∗
𝑖 − 1) ̂d∗𝑖 ( ̂d∗𝑖 )⊤ + 𝐼𝑛 with 𝑘 obtained by applying Algorithm 2

with input (�̂�∗1 , … , �̂�∗𝑛)
7: - Generate a new sample X1, … ,X𝑁 independently from 𝑔′ = 𝑔m̂∗,̂∗𝑘

8: - Return ℰ̂𝑁 = 1
𝑁

𝑁
∑
𝑖=1

𝜙(X𝑖)
𝑓 (X𝑖)
𝑔′(X𝑖)

𝑘 = 1 or 2, this amounts to finding covariance matrices that are perturbations of the identity (this is
relevant as we assume 𝑓 is standard Gaussian). Therefore, when approximating ∗ by such matrices,
we should first consider eigenvalues as different as possible from 1 (with the discrepancy from 1
being measured by ℓ).

In the first step of Algorithm 1, we assume 𝑔∗ can be sampled independently. This is a reasonable
assumption as classical techniques such as importance sampling with self-normalized weights or
Markov Chain Monte Carlo (MCMC) can be applied in this case (see for instance (Chan and Kroese
2012), (Grace, Kroese, and Sandmann 2014)). In this paper, we choose to apply a basic rejection
method that yields perfect independent samples from 𝑔∗, possibly at the price of a high computational
cost. As the primary goal of this paper is to understand whether the d∗𝑖 ’s are indeed good projection
directions, this cost will not be taken into account. Possible improvements to relax this assumption
are discussed in the conclusion of the paper and in Appendix C.

3.4 Choice of the number of dimensions 𝑘

The choice of the effective dimension 𝑘, i.e., the number of projection directions considered, is
important. If it is close to 𝑛, then the matrix ̂∗𝑘 will be close to ̂∗ which is the situation we want to
avoid in the first place. On the other hand, setting 𝑘 = 1 in all cases may be too simple and lead to
suboptimal results. In practice, however this is often a good choice. In order to adapt 𝑘 dynamically,
we consider a simple method based on the value of the KL divergence. Given the eigenvalues 𝜆1, … , 𝜆𝑛
ranked in decreasing ℓ-order, we look for the maximal gap between two consecutive eigenvalues
of the sequence (ℓ(𝜆1), … , ℓ(𝜆𝑛)). This allows to choose 𝑘 such that ∑𝑘

𝑖=1 ℓ(𝜆𝑖) is close to ∑𝑛
𝑖=1 ℓ(𝜆𝑖)

which is equal, up to an additive constant, to the minimal KL divergence (shown in Lemma 6.1). The
precise method is described in Algorithm 2.

Algorithm 2 Choice of the number of dimensions

1: Data: Sequence of positive numbers 𝜆1, … , 𝜆𝑛 in decreasing ℓ-order
2: Result: Number of selected dimensions 𝑘
3: - Compute the increments 𝛿𝑖 = ℓ(𝜆𝑖+1) − ℓ(𝜆𝑖) for 𝑖 = 1… 𝑛 − 1
4: - Return 𝑘 = argmax 𝛿𝑖, the index of the maximum of the differences.

3.5 Theoretical result concerning the projection onm∗

In (El Masri, Morio, and Simatos 2021), the authors propose to project on the meanm∗ of the optimal
auxiliary density 𝑔∗. Numerically, this algorithm is shown to perform well, but only a very heuristic
explanation based on the light tail of the Gaussian distribution is provided to motivate this choice.
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It turns out that the techniques used in the proof of Theorem 3.1 can shed light on why projecting
onm∗ may indeed be a good idea. Let us first state our theoretical result, and then explain why it
justifies the idea of projecting onm∗.

Theorem 3.2. Consider ∈ ℒ𝑛,1 of the form = 𝐼𝑛 + (𝛼 − 1)dd⊤ with 𝛼 > 0 and ‖d‖ = 1. Then the
minimizer in (𝛼,d) of the KL divergence between 𝑓 and 𝑔m∗, is (1 + ‖m∗‖2,m∗/‖m∗‖):

(1 + ‖m∗‖2,m∗/‖m∗‖) = argmin
𝛼,d

{𝐷(𝑓 , 𝑔m∗,𝐼𝑛+(𝛼−1)dd⊤) ∶ 𝛼 > 0, ‖d‖ = 1} .

The proof of Theorem 3.2 is detailed in Appendix A. In other words, m∗ appears as an optimal
projection direction when one seeks to minimize the KL divergence between 𝑓 and the Gaussian
density with mean m∗ and covariance of the form 𝐼𝑛 + (𝛼 − 1)dd⊤. Let us now explain why this
minimization problem is indeed relevant, and why choosing an auxiliary density which minimizes
this KL divergence may indeed lead to an accurate estimation. The justification deeply relies on the
recent results by (Chatterjee and Diaconis 2018).

As mentioned above, in a reliability context where one seeks to estimate a small probability 𝑝 =
ℙ(X ∈ 𝐴), Theorem 1.3 in (Chatterjee and Diaconis 2018) shows that 𝐷(𝑔∗, 𝑔) governs the sample
size required for an accurate estimation of 𝑝: more precisely, the estimation is accurate if the sample
size is larger than 𝑒𝐷(𝑔

∗,𝑔), and inaccurate otherwise. This motivates the rationale for minimizing the
KL divergence with 𝑔∗.

However, in high dimensions, importance sampling is known to fail because of the weight degeneracy
problemwherebymax𝑖 𝐿𝑖/∑𝑖 𝐿𝑖 ≈ 1, with the 𝐿𝑖’s the unnormalized importanceweights, or likelihood
ratios: 𝐿𝑖 = 𝑓 (X𝑖)/𝑔(X𝑖) with the X𝑖’s i.i.d. drawn according to 𝑔. Theorem 2.3 in (Chatterjee and
Diaconis 2018) shows that the weight degeneracy problem is avoided if the empirical mean of the
likelihood ratios is close to 1, and for this, Theorem 1.1 in (Chatterjee and Diaconis 2018) shows
that the sample size should be larger than 𝑒𝐷(𝑓 ,𝑔). In other words, these results suggest that the KL
divergence with 𝑔∗ governs the sample size for an accurate estimation of 𝑝, while the KL divergence
with 𝑓 governs the weight degeneracy problem.

In light of these results, it becomes natural to consider the KL divergence with 𝑓 and not only 𝑔∗
(Owen and Zhou 2000). Of course, minimizing 𝐷(𝑓 , 𝑔m,) without constraints on m and is trivial
since 𝑔m, = 𝑓 for m = 0 and = 𝐼𝑛. However, these choices are the ones we want to avoid in the first
place, and so it makes sense to impose some constraints onm and . If one keeps in mind the other
objective of getting close to 𝑔∗, then the choice m = m∗ becomes very natural, and we are led to
considering the optimization problem of Theorem 3.2 (when ∈ ℒ𝑛,1 is a rank-1 perturbation of the
identity).

4 Computational framework

4.1 Numerical procedure for IS estimate comparison

The objective of the numerical simulations is to evaluate the impact of the choice of the covariance
matrix on the estimation accuracy of a high dimensional integral ℰ. We thus want to compare the IS
estimation results for different auxiliary densities and more particularly for different choices of the
auxiliary covariance matrix when the IS auxiliary density is Gaussian. The details of the considered
covariance matrices is given in Section 4.2. To extend this comparison, we also compute the results
when the IS auxiliary density is chosen with the von Mises–Fisher–Nakagami (vMFN) model recently
proposed in (Papaioannou, Geyer, and Straub 2019) for high dimensional probability estimation (See
Appendix B).
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In Section 5 we test these different models of auxiliary densities on five test cases, where 𝑓 is a
standard Gaussian density. This choice is not a theoretical limitation as we can in principle always
come back to this case by transforming the vector X with isoprobabilistic transformations (see for
instance (Hohenbichler and Rackwitz 1981), (Liu and Der Kiureghian 1986)).

The precise numerical framework that we will consider to assess the efficiency of the different
auxiliary models is as follows. We assume first that 𝑀 i.i.d. random samples X∗

1 , … ,X∗
𝑀 distributed

from 𝑔∗ are available from rejection sampling (unless in Appendix C where we consider MCMC).
From these samples, the parameters of the Gaussian and of the vMFN auxiliary density are computed
to get an auxiliary density 𝑔′. Finally, 𝑁 samples are generated from 𝑔′ to provide an estimation of
ℰ with IS. This procedure is summarized by the following stages:

1. Generate a sample X∗
1 , … ,X∗

𝑀 independently according to 𝑔∗;
2. From X∗

1 , … ,X∗
𝑀, compute the parameters of the auxiliary parametric density 𝑔′;

3. Generate a new sample X1, … ,X𝑁 independently from 𝑔′;

4. Estimate ℰ with ℰ̂𝑁 = 1
𝑁

𝑁
∑
𝑖=1

𝜙(X𝑖)
𝑓 (X𝑖)
𝑔′(X𝑖)

.

The number of samples 𝑀 and 𝑁 are respectively set to 𝑀 = 500 and 𝑁 = 2000. The computational
cost to generate 𝑀 = 500 samples distributed from 𝑔∗ with rejection sampling is often unaffordable
in practice; if ℰ is a probability of order 10−𝑝, then approximately 500 × 10𝑝 calls to 𝜙 are necessary
for the generation of X∗

1 , … ,X∗
𝑀. Finally, whatever the auxiliary parametric density 𝑔′ computed

from X∗
1 , … ,X∗

𝑀, the number of calls to 𝜙 for the estimation step stays constant and equal to 𝑁. The
number of calls to 𝜙 for the whole procedure on a 10−𝑝 probability estimation is about 500 × 10𝑝 + 𝑁.
A more realistic situation is considered in Appendix C where MCMC is applied to generate samples
from 𝑔∗. The resulting samples are dependent but the computational cost is significanlty reduced.
The number of calls to 𝜙 with MCMC is then equal to 𝑀 which leads to a total computational cost of
𝑀 + 𝑁 for the whole procedure.

This procedure is then repeated 500 times to provide a mean estimation ℰ̂ of ℰ. In the result tables,
for each auxiliary density 𝑔′ we report the corresponding value for the relative error ℰ̂/ℰ − 1 and
the coefficient of variation of the 500 iterations (the empirical standard deviation divided by ℰ). As
was established in the proof of Theorem 3.1, the KL divergence is, up to an additive constant, equal
to 𝐷′() = log|| + tr(∗−1) which we will refer to as partial KL divergence. In the result tables, we
also report thus the mean value of 𝐷′() to analyse the relevance of the auxiliary density 𝑔m̂∗, for
six choices of covariance matrix . The next sections specify the different parameters of 𝑔′ for the
Gaussian model and for the vMFN model we have considered in the simulations.

4.2 Choice of the auxiliary density 𝑔′ for the Gaussian model

The goal is to get benchmark results to assess whether one can improve estimations of Gaussian IS
auxiliary density by projecting the covariance matrix ∗ in the proposed directions d∗𝑖 . The algorithm
that we study here (Algorithms 1+2) aims more precisely at understanding whether:

• projecting can improve the situation with respect to the empirical covariance matrix;
• the d∗𝑖 ’s are good candidates, in particular compared to the choicem∗ suggested in (El Masri,
Morio, and Simatos 2021);

• what is the impact in making errors in estimating the eigenpairs (𝜆∗𝑖 ,d∗𝑖 ).

Let us define the estimate m̂∗ ofm∗ from the 𝑀 i.i.d. random samples X∗
1 , … ,X∗

𝑀 distributed from
𝑔∗ with

m̂∗ = 1
𝑀

𝑀
∑
𝑖=1

X∗
𝑖 . (8)
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In our numerical test cases, we will compare six different choices of Gaussian auxiliary distributions
𝑔′ with mean m̂∗ and the following covariance matrices summarized in Table 1:

1. ∗: the optimal covariance matrix given by Equation 3;

2. ̂∗: the empirical estimation of ∗ given by

̂∗ = 1
𝑀

𝑀
∑
𝑖=1

(X∗
𝑖 − m̂∗)(X∗

𝑖 − m̂∗)⊤. (9)

The four other covariance matrices considered in the numerical simulations are of the form∑𝑘
𝑖=1(𝑣𝑖 −

1)d𝑖d⊤𝑖 + 𝐼𝑛 where 𝑣𝑖 is the variance of ̂∗ in the direction d𝑖, 𝑣𝑖 = d⊤𝑖 ̂∗d𝑖. The considered choice of 𝑘
and d𝑖 gives the following covariance matrices:

3. ̂opt is obtained by choosing d𝑖 = d∗𝑖 of Theorem 3.1, which is supposed to be perfectly known
from ∗ and 𝑘 is computed with Algorithm 2;

4. ̂+dopt is obtained by choosing d𝑖 = ̂d∗𝑖 the 𝑖-th eigenvector of ̂∗ (in ℓ-order), which is an estimation
of d∗𝑖 , and 𝑘 is computed with Algorithm 2;

5. ̂mean is obtained by choosing 𝑘 = 1 and d1 = m∗/‖m∗‖;

6. ̂+dmean is obtained by choosing 𝑘 = 1 and d1 = m̂∗/‖m̂∗‖, where m̂∗ given by Equation 8.

The matrices ̂opt and ̂mean use the estimation ̂∗ with the optimal directions d∗𝑖 or m∗, while the
matrices ̂+dopt and ̂+dmean involve an estimation of these directions from ̂∗. By definition, ∗ will give
optimal results, while results for ̂∗ will deteriorate as the dimension increases, which is the well-
known behavior which we try to improve. Moreover, ∗ and the projection directions d∗𝑖 or m∗,
are of course unknown in practice. For simulation comparison purpose, they could be determined
analytically in simple test cases and otherwise we obtained them by a brute force Monte Carlo
scheme with a very high simulation budget. Finally, we emphasize that Algorithm 1 corresponds to
estimating and projecting on the d∗𝑖 ’s, and so the matrix ̂∗𝑘 of Algorithm 1 is equal to the matrix ̂+dopt.

Table 1: Presentation of the six covariance matrices considered in the numerical examples.

∗ ̂∗ ̂opt ̂mean ̂+dopt ̂+dmean

Initial covariance
matrix

∗ ̂∗ ̂∗ ̂∗ ̂∗ ̂∗

Projection
directions (exact or
estimated)

- - Exact Exact Esti-
mated

Esti-
mated

Choice for the
projection direction

None None Opt Mean Opt Mean

5 Numerical results on five test cases

The proposed numerical framework is applied on three examples that are often considered to assess
the performance of importance sampling algorithms and also two test cases from the area of financial
mathematics.
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5.1 Test case 1: one-dimensional optimal projection

We consider a test case where all computations can be made exactly. This is a classical example of
rare event probability estimation, often used to test the robustness of a method in high dimensions.
It is given by 𝜙(x) = 𝕀{𝜑(x)≥0} with 𝜑 the following affine function:

𝜑 ∶ x = (𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛 ↦
𝑛
∑
𝑗=1

𝑥𝑗 − 3√𝑛. (10)

The quantity of interest ℰ is defined as ℰ = ∫ℝ𝑛 𝜙(x)𝑓 (x)dx = ℙ𝑓(𝜑(X) ≥ 0) ≃ 1.35 ⋅ 10−3 for all 𝑛
where the density 𝑓 is the standard 𝑛-dimensional Gaussian distribution. Here, the zero-variance

density is 𝑔∗(x) =
𝑓 (x)𝕀{𝜑(x)≥0}

ℰ
, and the optimal parametersm∗ and ∗ in Equation 3 can be computed

exactly, namely m∗ = 𝛼1 with 𝛼 = 𝑒−9/2/(ℰ(2𝜋)1/2) and 1 = 1
√𝑛
(1, … , 1) ∈ ℝ𝑛 the normalized

constant vector, and ∗ = (𝑣 − 1)11⊤ + 𝐼𝑛 with 𝑣 = 3𝛼 − 𝛼2 + 1.

5.1.1 Evolution of the partial KL divergence and spectrum

Figure 2a represents the evolution as the dimension varies between 5 and 100 of the partial KL
divergence 𝐷′ for three different choices of covariance matrix: the optimal matrix ∗, its empirical
estimation ̂∗ and the estimation ̂∗𝑘 of the optimal lower-dimensional covariance matrix. We can notice
that the partial KL divergence for ̂∗ grows much faster than the other two, and that the partial KL
divergence for ̂∗𝑘 remains very close to the optimal value 𝐷′(∗). As the KL divergence is a proxy for
the efficiency of the auxiliary density (it is for instance closely related to the number of samples
required for a given precision (Chatterjee and Diaconis 2018)), this suggests that using ̂∗𝑘 will provide
results close to optimal.

We now check this claim. As ∗ = (𝑣 − 1)11⊤ + 𝐼𝑛, its eigenpairs are (𝑣 , 1) and (1,d𝑖) where the d𝑖’s
form an orthonormal basis of the space orthogonal to the space spanned by 1. In particular, (𝑣 , 1) is
the largest (in ℓ-order) eigenpair of ∗ and ∗

𝑘 =
∗ for any 𝑘 ≥ 1.

In practice, we do not use this theoretical knowledge and ∗, ∗𝑘 and the eigenpairs are estimated. The
six covariance matrices introduced in Section 4.2 and in which we are interested are as follows:

• ∗ = (𝑣 − 1)11⊤ + 𝐼𝑛;
• ̂∗ given by Equation 9;
• ̂opt and ̂mean are equal and given by (�̂� − 1)11⊤ + 𝐼𝑛 with �̂� = 1⊤ ̂∗1. This amounts to assuming
that the projection direction 1 is perfectly known, whereas the variance in this direction is
estimated;

• ̂+dopt = (�̂� − 1) ̂d ̂d⊤ + 𝐼𝑛 with (�̂�, ̂d) the smallest eigenpair of ̂∗. The difference with the previous
case is that we do not assume anymore that the optimal projection direction 1 is known, and
so it needs to be estimated;

• ̂+dmean = (�̂� − 1) m̂
∗(m̂∗)⊤

‖m̂∗‖2 + 𝐼𝑛 with m̂∗ given by Equation 8 and �̂� = (m̂∗)⊤ ̂∗m̂∗

‖m̂∗‖2 . Here we assume
that m∗ is a good projection direction, but is unknown and therefore needs to be estimated.

Note that in the particularly simple case considered here, both m̂∗/‖m̂∗‖ and ̂d are estimators of 1
but they are obtained by different methods. In the next example we will consider a case where m∗ is
not an optimal projection direction as given by Theorem 3.1.

Figure 2b represents the images by ℓ of the eigenvalues of ∗ and ̂∗. This picture carries a very important
insight. We notice that the estimation of most eigenvalues is poor: indeed, all the blue crosses except
the leftmost one are meant to be estimator of 1, whereas we see that they are more or less uniformly
spread around 1. This means that the variance terms in the corresponding directions are poorly
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estimated, which could be the explanation on why the use of ̂∗ gives an inaccurate estimation. But
what we remark also is that the function ℓ is quite flat around one: as a consequence, although the
eigenvalues offer significant variability, this variability is smoothed by the action of ℓ. Indeed, the
images of the eigenvalues by ℓ take values between 0 and 0.8 and have smaller variability. Moreover,
ℓ(𝑥) increases sharply as 𝑥 approaches 0 and thus efficiently distinguishes between the two leftmost
estimated eigenvalues and is able to separate them.
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(a) Evolution of the partial KL divergence as the
dimension increases, with the optimal covariance
matrix ∗ (red squares), the sample covariance ̂∗
(blue circles), and the projected covariance ̂∗𝑘 (black
dots).
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(b) Computation of ℓ(𝜆𝑖) for the eigenvalues of ∗

(red squares) and ̂∗ (blue crosses) in dimension
𝑛 = 100.

Figure 2: Partial KL divergence and spectrum for the function 𝜙 = 𝕀𝜑≥0 with 𝜑 the linear function
given by Equation 10.

5.1.2 Numerical results

We report in Table 2 the numerical results for the six different matrices and the vMFN model for the
dimension 𝑛 = 100. The column ∗ gives the optimal results, while the column ̂∗ corresponds to the
results that we are trying to improve. Comparing these two columns, we notice as expected that the
estimation of ℰ with ̂∗ is significantly degraded. Compared to the first column ∗, the third and fourth
columns with ̂opt = ̂mean correspond to the best projection direction 1 (as for ∗) but estimating the
variance in this direction (instead of the true variance) with 1⊤ ̂∗1. This choice performs very well,
with numerical results similar to the optimal ones. This can be understood since in this case, both
̂opt and ∗ are of the form 𝛼11⊤ + 𝐼𝑛 and so estimating ̂opt requires only a one-dimensional estimation
(namely, the estimation of 𝛼). Next, the last two columns ̂+dopt and ̂+dmean highlight the impact of having
to estimate the projection directions in addition to the variance since these two matrices are of the
form �̂� 1̂1̂

⊤
+𝐼𝑛 with both �̂� (the variance term) and 1̂ (the direction) being estimated. We observe that

these matrices yield results which are close to optimal and greatly improve the estimation obtained
using ̂∗.

Moreover, we observe that ̂+dmean gives better results than ̂+dopt. We suggest that this is because m̂∗/‖m̂∗‖
is a better estimator of 1 than the eigenvector of ̂∗. Indeed, evaluating m̂∗ requires the estimation
of 𝑛 parameters, whereas ̂∗ needs around 𝑛2/2 parameters to estimate, so the eigenvector is finally
more noisy than the mean vector. In the last column, we present the vMFN estimation that is slightly
more efficicent than the estimation obtained with ̂+dmean.

Thus, the proposed idea improves significantly the probability estimation in high dimensions. But
we see that the method taken in (El Masri, Morio, and Simatos 2021) with the projection m∗ is at
least as much efficient in this example where we need only a one-dimensional projection. The next
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case shows that the projection on more than one direction can outperform the one-dimensional
projection onm∗.

Table 2: Numerical comparison of the estimation of ℰ ≈ 1.35 ⋅ 10−3 considering the Gaussian model
with the six covariance matrices defined in Section 4.2 and the vFMN model, when 𝜙 = 𝕀𝜑≥0 with 𝜑
the linear function given by Equation 10. As explained in the text, ̂mean and ̂opt are actually equal in
this case. The computational cost is 𝑁 = 2000.

∗ ̂∗ ̂𝑜𝑝𝑡 ̂𝑚𝑒𝑎𝑛 ̂+𝑑𝑜𝑝𝑡 ̂+𝑑𝑚𝑒𝑎𝑛 vMFN

D’ 97.3 111.9 97.4 97.4 97.7 97.5 /
Relative
error (%)

-0.3 -24.3 0.1 0.1 0.1 0.1 0.2

Coeffi-
cient of
variation
(%)

2.6 149.1 4 4 9.4 5.1 4.5

5.2 Test case 2: projection in 2 directions

The second test case is again a probability estimation, i.e., it is of the form 𝜙 = 𝕀{𝜑≥0} with now the
function 𝜑 having some quadratic terms:

𝜑 ∶ x = (𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛 ↦ 𝑥1 − 25𝑥22 − 30𝑥23 − 1. (11)

The quantity of interest ℰ is defined as ℰ = ∫ℝ𝑛 𝜙(x)𝑓 (x)dx = ℙ𝑓(𝜑(X) ≥ 0) for all 𝑛 where the
density 𝑓 is the standard 𝑛-dimensional Gaussian distribution. This function is motivated in part
because m∗ and d∗1 are different and also because Algorithm 2 chooses two projection directions.
Thus, this is an example where ̂mean and ̂opt are significantly different.

5.2.1 Evolution of the partial KL divergence and spectrum

We check on Figure 3a that the partial KL divergence obeys the same behavior as for the previous
example, namely the one associated with ̂∗ increases much faster than the ones associated with
∗ and ̂∗𝑘 , which again suggests that projecting can improve the situation. Since the function 𝜑
only depends on the first three variables and is even in 𝑥2 and 𝑥3, one gets that m∗ = 𝛼e1 with
𝛼 = 𝔼(𝑋1 ∣ 𝑋1 ≥ 25𝑋 2

2 + 30𝑋 2
3 + 1) ≈ 1.9 (here and in the sequel, e𝑖 denotes the 𝑖th canonical vector

of ℝ𝑛, i.e., all its coordinates are 0 except the 𝑖-th one which is equal to one), and that ∗ is diagonal
with

∗ =

⎛
⎜
⎜
⎜
⎜
⎝

𝜆1 0 0 0 ⋯ 0
0 𝜆2 0 0 ⋯ 0
0 0 𝜆3 0 ⋯ 0
0 0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋯ 1

⎞
⎟
⎟
⎟
⎟
⎠

.

Note that the off-diagonal elements of the submatrix (∗𝑖𝑗)1≤𝑖,𝑗≤3 are indeed 0 since they result from
integrating an odd function of an odd random variable with an even conditioning. For instance, if
𝐹(𝑥) = ℙ(30𝑋 2

3 + 1 ≤ 𝑥), then by conditioning on (𝑋1, 𝑋3) we obtain

∗
12 = 𝔼 ((𝑋1 − 𝛼)𝑋2 ∣ 𝑋1 − 25𝑋 2

2 ≥ 30𝑋 2
3 + 1) = 1

ℰ
𝔼 [(𝑋1 − 𝛼)𝔼 (𝑋2𝐹(𝑋1 − 25𝑋 2

2 ) ∣ 𝑋1)]

which is 0 as 𝑥2𝐹(𝑥1 − 𝑥22 ) is an odd function of 𝑥2 for fixed 𝑥1, and 𝑋2 has an even density.
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We can numerically compute 𝜆1 ≈ 0.28, 𝜆2 ≈ 0.009 and 𝜆3 ≈ 0.008. These values correspond to
the red squares in Figure 3b which shows that the smallest eigenvalues are properly estimated.
Moreover, Algorithm 2 selects the two largest eigenvalues, which have the highest ℓ-values. These
two eigenvalues thus correspond to the eigenvectors e2 and e3, and so we see that on this example,
the optimal directions predicted by Theorem 3.1 are significantly different (actually, orthogonal)
fromm∗ which is proportional to e1.
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(a) Evolution of the partial KL divergence as the
dimension increases, with the optimal covariance
matrix ∗ (red squares), the sample covariance ̂∗
(blue circles), and the projected covariance ̂∗𝑘 (black
dots).
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Figure 3: Partial KL divergence and spectrum for the function 𝜙 = 𝕀𝜑≥0 with 𝜑 given by Equation 11.
in dimension 𝑛 = 100. Left: same behavior as for the first test case. Right: we now have two
eigenvalues that stand out, and the behavior of ℓ is such that Algorithm 2 selects 𝑘 = 2 which
corresponds to the leftmost two.

5.2.2 Numerical results

The numerical results of our simulations are presented in Table 3. We remark as before that, when
using ̂∗, the accuracy quickly deteriorates as the dimension increases as shows the coefficient of
variation of 396% in dimension 𝑛 = 100. In contrast, ̂opt leads to very accurate results, which remain
close to optimal up to the same dimension 𝑛 = 100. This behavior is to compare with the evolution
of the relative KL divergence: contrary to ̂∗, ̂opt gives a partial KL divergence close to optimal in
dimension 𝑛 = 100. This confirms that the KL divergence is indeed a good proxy to assess the
relevance of an auxiliary density.

It is also interesting to note that the direction m∗ improves the situation compared to not projecting
(column ̂mean compared to ̂∗), but using ̂opt gives significantly better results. Thus, this confirms our
theoretical result that the d∗𝑖 ’s are good directions on which to project.

Finally, we notice that performing estimations of the projection directions instead of taking the
true ones (columns ̂+dopt vs ̂opt) slightly degrades the situation, making the coefficient of variation
increase even if the accuracy remains satisfactory. The vMFN model is also not really adapted to
this example as it gives results similar to ̂mean. Gaussian density family are more able to fit 𝑔∗ than
vMFN parametric model in this test case.
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Table 3: Numerical comparison of the estimation of ℰ ≈ 1.51 ⋅ 10−3 considering the Gaussian density
with the six covariance matrices defined in Section 4.2 and the vFMN model, when 𝜙 = 𝕀𝜑≥0 with 𝜑
the quadratic function given by Equation 11. The computational cost is 𝑁 = 2000.

∗ ̂∗ ̂𝑜𝑝𝑡 ̂𝑚𝑒𝑎𝑛 ̂+𝑑𝑜𝑝𝑡 ̂+𝑑𝑚𝑒𝑎𝑛 vMFN

D’ 89.1 103.6 89.7 96.7 90.4 96.8 /
Relative
error (%)

-0.2 9 -0.4 2 -0.4 -0.6 1.7

Coeffi-
cient of
variation
(%)

3.5 396.2 3.6 28.8 8.5 30.1 31.9

Remark. For the two test cases studied so far, projecting ̂∗ in the Failure-Informed Subspace (FIS) of
(Uribe et al. 2021) (see the introduction) would outperform our method with ̂∗𝑘 , leading to results close
to those obtained with ∗. However, computing the FIS relies on the knowledge of the gradient of the
function 𝜑, which is straightforward to compute in these two test cases, and the method of (Uribe et
al. 2021) can be applied because they are rare-event problems (i.e., 𝜙 is of the form 𝜙 = 𝕀{𝜑≥0}). In
the next section we present other applications where the evaluation of the FIS is not feasible since
either the function is not differentiable (test case of Section 5.4) or the example is not a rare event
simulation problem (test cases of Section 5.3 and Section 5.5).

5.3 Test case 3: banana shape distribution

The third test case we consider is the integration of the banana shape distribution ℎ, which is a
classical test case in importance sampling (Cornuet et al. 2012), (Elvira et al. 2019). The banana
shape distribution is the following pdf

ℎ(x) = 𝑔0,𝐶(𝑥1, 𝑥2 + 𝑏(𝑥21 − 𝜎2), 𝑥3, … , 𝑥𝑛). (12)

The term 𝑔0,𝐶 represents the pdf of a Gaussian distribution of mean 0 and diagaonal covariance
matrix 𝐶 = diag(𝜎2, 1, … , 1). The value of 𝑏 and 𝜎2 are respectively set to 𝑏 = 800 and 𝜎2 = 0.0025.
We choose 𝜙 such that the optimal IS density 𝑔∗ is equal to ℎ, i.e., we choose 𝜙 = ℎ/𝑓 so that the
integral ℰ that we are trying to estimate is equal to ℰ = ∫ 𝜙𝑓 = 1. This choice is made in order to
have an optimal covariance matrix ∗ whose two largest eigenvalues (in ℓ-order) correspond to the
smallest and largest eigenvalues, as can be seen in Figure 4b. More formally, the optimal value of the
Gaussian parameters are given bym∗ = 0 and ∗ is diagonal with

∗ =

⎛
⎜
⎜
⎜
⎜
⎝

0.0025 0 0 0 ⋯ 0
0 9 0 0 ⋯ 0
0 0 1 0 ⋯ 0
0 0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋯ 1

⎞
⎟
⎟
⎟
⎟
⎠

.

The evolution of the KL partial divergence is given in Figure 4a. As the optimal mean m∗ is equal to
0, we cannot project onm∗ and so the matrix ̂mean is not defined. However, the numerical estimation
m̂∗ will not be equal to 0 and so the approach proposed in (El Masri, Morio, and Simatos 2021) with
̂+dmean is still applicable numerically.

The simulation results for the different covariance matrices and the vMFN density are given in
Table 4. The matrices ̂opt and ̂+dopt perform very well for the estimation of ℰ with an accuracy of the
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same order as the optimal covariance matrix ∗. The effect of estimating the 𝑘 = 2 main projection
directions does not affect much the estimation performance as ̂+dopt is still efficient compared to ̂opt.
The estimation results with ̂+dmean are not really accurate and this choice is in fact roughly equivalent
to choosing a random projection direction. The vMFN parametric model is not adapted to this test
case as the vMFN estimate is not close to 1.
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(a) Evolution of the partial KL divergence as the
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Figure 4: Partial KL divergence and spectrum for the banana shape example.

Table 4: Numerical comparison of the estimation of ℰ = 1 considering the Gaussian density with
the six covariance matrices defined in Section 4.2 and the vFMN model, 𝜙 = ℎ/𝑓. NA stands for non
applicable, as explained in the text. The computational cost is 𝑁 = 2000.

∗ ̂∗ ̂𝑜𝑝𝑡 ̂𝑚𝑒𝑎𝑛 ̂+𝑑𝑜𝑝𝑡 ̂+𝑑𝑚𝑒𝑎𝑛 vMFN

D’ 96.2 110.8 96.2 NA 96.8 106.8 /
Relative
error (%)

-0.6 3.5 -1.1 NA -1.4 -5.6 -
83.0

Coeffi-
cient of
variation
(%)

8.6 593.2 6.7 NA 10.2 47 83.0

5.4 Application 1: large portfolio losses

The next example is a rare event application in finance, taken from (Bassamboo, Juneja, and Zeevi
2008), (Chan and Kroese 2012). The unknown integral is ℰ = ∫ℝ𝑛+2 𝜙(x)𝑓 (x)dx = ℙ𝑓(𝜑(X) ≥ 0),
with 𝜙 = 𝕀{𝜑≥0} and 𝑓 is the standard 𝑛 + 2-dimensional Gaussian distribution. The function 𝜑 is the
portfolio loss function defined as:

𝜑(x) =
𝑛+2
∑
𝑗=3

𝕀{Ψ(𝑥1,𝑥2,𝑥𝑗)≥0.5√𝑛} − 𝑏𝑛, (13)

with
Ψ(𝑥1, 𝑥2, 𝑥𝑗) = (𝑞𝑥1 + 3(1 − 𝑞2)1/2𝑥𝑗) [𝐹−1Γ (𝐹𝒩(𝑥2))]

−1/2 ,

where 𝐹Γ and 𝐹𝒩 are the cumulative distribution functions of Gamma(6, 6) and 𝒩 (0, 1) random
variables respectively. The constant 𝑏 is choosen such that the probability is of the order of 10−3 in
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all dimension, then we have 𝑏 = 0.45 when 𝑛 ≤ 30, 𝑏 = 0.3 when 30 < 𝑛 ≤ 70, and 𝑏 = 0.25 when
𝑛 > 70.

The reference value of this probability ℰ is reported in Table 5 for dimension 𝑛 = 100. The optimal
parametersm∗ and ∗ cannot be computed analytically, but they are accurately estimated by Monte
Carlo with a large sample. It turns out that m∗ and the first eigenvector d∗1 of ∗ are numerically
indistinguishable and that Algorithm 2 selects 𝑘 = 1 projection direction, so that numerically, the
choices ̂opt and ̂mean are indistinguishable and gives the same estimation results. Actually, the fact
that these two estimators behave similarly does not seem to come from the fact thatm∗ and d∗ are
close: this relation can be broken for instance by a simple translation argument (see remark after
Table 6), but even then they behave similarly. The KL partial divergence and the spectrum with the
associated ℓ-order are presented respectively in Figure 5a and in Figure 5b.
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(a) Evolution of the partial KL divergence as the
dimension increases, with the optimal covariance
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(blue circles), and the projected covariance ̂∗𝑘 (black
dots).
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Figure 5: Partial KL divergence and spectrum for the function 𝜙 = 𝕀𝜑≥0 with 𝜑 the function given by
Equation 13.

Table 5: Numerical comparison of the estimation of ℰ ≈ 1.82 ⋅ 10−3 considering the Gaussian density
with the six covariance matrices defined in Section 4.2 and the vFMN model, 𝜙 = 𝕀𝜑≥0 with 𝜑 given
by Equation 13. The computational cost is 𝑁 = 2000.

∗ ̂∗ ̂𝑜𝑝𝑡 ̂𝑚𝑒𝑎𝑛 ̂+𝑑𝑜𝑝𝑡 ̂+𝑑𝑚𝑒𝑎𝑛 vMFN

D’ 107.3 122.5 107.6 107.6 108 107.7 /
Relative
error (%)

0.6 0.4 -0.3 -0.7 0.4 -0 0.4

Coeffi-
cient of
variation
(%)

6.5 370.1 7.1 7.8 15 9.6 6.5

The results of Table 5 show similar trends as for the first test case of Section 5.1. First, projecting
seems indeed a relevant idea, as using ̂opt or ̂mean greatly improves the situation compared to ̂∗. This
is particularly salient as ̂∗ yields an important bias and coefficient of variation, whereas projecting on
d∗1 or m∗ yields a more accurate estimation. This improvement is still true even when the projection
directions are estimated. Finally, ̂+dopt seems to behave better than ̂+dmean.
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5.5 Application 2: discretized Asian payoff

Our last numerical experiment is a mathematical finance example coming from (Kawai 2018), repre-
senting a discrete approximation of a standard Asian payoff under the Black–Scholes model. The
goal is to estimate the integral ℰ = ∫ℝ𝑛 𝜙(x)𝑓 (x)dx with 𝑓 the standard 𝑛-dimensional Gaussian
distribution and the following function 𝜙:

𝜙 ∶ x = (𝑥1, … , 𝑥𝑛) ↦ 𝑒−𝑟𝑇 [
𝑆0
𝑛

𝑛
∑
𝑖=1

exp (𝑖 (𝑟 − 𝜎2

2
) 𝑇
𝑛
+ 𝜎

√
𝑇
𝑛

𝑖
∑
𝑘=1

𝑥𝑘) − 𝐾]
+

(14)

where [𝑦]+ = max(𝑦 , 0), for a real number 𝑦. The constants are taken from (Kawai 2018): 𝑆0 = 50,
𝑟 = 0.05, 𝑇 = 0.5, 𝜎 = 0.1, 𝐾 = 55, where they test the function for dimension 𝑛 = 16. In our
contribution, we test this example in dimension 100. Concerning m∗ and the d∗𝑖 ’s, the situation
is the same as in the previous example: they are not available analytically but can be estimated
numerically by Monte Carlo with a large simulation budget. And again, it turns out that m∗ and
the first eigenvector d∗1 of ∗ are numerically indistinguishable and that Algorithm 2 selects 𝑘 = 1
projection direction, so that ̂opt and ̂mean yield results that are numerically indistinguishable. The
KL partial divergence and the spectrum with the associated ℓ-order are respectively presented in
Figure 6a and Figure 6b.

The results of this example are given in Table 6. The insight gained in the previous examples
is confirmed. Projecting on m∗ or d∗1 in dimension 𝑛 = 100 enables to reach convergence and
stongly reduces (compared to ̂∗) the coefficient of variation from 559% to nearly 2%. Moreover, this
improvement goes through even when projection directions are estimated, with again ̂+dmean behaving
better than ̂+dopt.
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(a) Evolution of the partial KL divergence as the
dimension increases, with the optimal covariance
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Figure 6: Partial KL divergence and spectrum for the function 𝜙 given in Equation 14.

Table 6: Numerical comparison of the estimation of ℰ ≈ 18.7 × 10−3 considering the Gaussian density
with the six covariance matrices defined in Section 4.2 and the vFMN model, when 𝜙 is given by
Equation 14. The computational cost is 𝑁 = 2000.

∗ ̂∗ ̂𝑜𝑝𝑡 ̂𝑚𝑒𝑎𝑛 ̂+𝑑𝑜𝑝𝑡 ̂+𝑑𝑚𝑒𝑎𝑛 vMFN

D’ 98.3 127.9 98.3 98.3 99.5 98.5 /
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Table 6: Numerical comparison of the estimation of ℰ ≈ 18.7 × 10−3 considering the Gaussian density
with the six covariance matrices defined in Section 4.2 and the vFMN model, when 𝜙 is given by
Equation 14. The computational cost is 𝑁 = 2000.

∗ ̂∗ ̂𝑜𝑝𝑡 ̂𝑚𝑒𝑎𝑛 ̂+𝑑𝑜𝑝𝑡 ̂+𝑑𝑚𝑒𝑎𝑛 vMFN

Relative
error (%)

0.4 -37.2 0.3 0.3 -1 0.6 18.3

Coeffi-
cient of
variation
(%)

2.2 559.2 2.3 2.9 10.4 2.6 18.9

Remark. As already mentioned, the two directionsm∗ and d∗1 are numerically indistinguishable in
the two examples of Section 5.4 and Section 5.5. However, we do not believe this relation to be highly
relevant. For instance, this symmetry can be broken by changing 𝜙 into 𝜙′ = 𝜙(⋅ − 𝜇) and 𝑓 into
𝑓 ′ = 𝑓 (⋅ − 𝜇) for some 𝜇 ∈ ℝ𝑛. Since 𝑔∗ ∝ 𝜙𝑓, this amounts to translating 𝑔∗ which thus changes
m∗ into m∗′ = m∗ + 𝜇, but which does not change the covariance matrix (and therefore its leading
eigenvector d∗1) which is translation-invariant. Note that this translation does not affect the integral
ℰ = ∫ 𝜙′𝑓 ′ = ∫ 𝜙𝑓, and so this modification leads to a new estimator ℰ̂𝜇 of the same quantity ℰ.
However, it can be shown that ℰ̂𝜇 and ℰ̂ (the estimators considered throughout the paper) have the
same law so that this translation, although it does break the relationm∗ ≈ d∗1 , does not change the
law of the estimators. This suggests that, if the estimators based on ̂opt and ̂mean do behave similarly
on these examples, this is not due to the fact that m∗ and d∗1 are close but rather to Theorem 3.1 and
Theorem 3.2. However, the fact that m∗ and d∗1 are close bears some insight into the importance of
the quality of the estimation of the projection direction as we now elaborate in the conclusion.

6 Conclusion

The goal of this paper is to assess the efficiency of projection methods in order to overcome the curse
of dimensionality for importance sampling. Based on a new theoretical result (Theorem 3.1), we
propose to project on the subspace spanned by the eigenvectors d∗𝑖 ’s corresponding to the largest
eigenvalues of the optimal covariance matrix ∗, where eigenvalues are ranked based on their image
by some explicit function ℓ. Our numerical results show that if the d∗𝑖 ’s were perfectly known, then
projecting on them would greatly improve the final estimation compared to using the empirical
estimation of the covariance matrix and actually lead to results which are comparable to those
obtained with the optimal covariance matrix. Moreover, we show that this improvement goes
through when one estimates the d∗𝑖 ’s by computing the eigenpairs of ̂∗.

These theoretical and numerical results show that the d∗𝑖 ’s of Theorem 3.1 are good directions in
which to estimate variance terms. With the insight gained, we see several ways to extend our results.
Two in particular stand out:

• study different ways of estimating the eigenpairs (𝜆∗𝑖 ,d∗𝑖 );
• incorporate this method in adaptive importance sampling schemes, in particular the cross-
entropy method (Rubinstein and Kroese 2017b).

For the first point, remember that we made the choice to estimate the eigenpairs of ∗ by computing
the eigenpairs of ̂∗. Moreover, in the numerical examples of Section 5.1, Section 5.4 and Section 5.5
where m∗ and d∗1 are equal or indistinguishable, we saw that ̂+dmean performed better than ̂+dopt and we

conjecture that this is because m̂ is a better estimator than ̂d∗1 (recall thatm∗ = d∗1 for the example of
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Section 5.1, while in Section 5.4 and Section 5.5 they are numerically indistinguishable and so, for all
practical purposes, m̂∗ and ̂d∗1 can be considered estimators of the same direction). This suggests that
improving the estimation of the d∗𝑖 ’s can indeed improve the final estimation ofℰ. Possible ways to do
so consist in adapting existing results on the estimation of covariance matrices (for instance (Ledoit
and Wolf 2004)) or even directly results on the estimation of eigenvalues of covariance matrices such
as (Benaych-Georges and Nadakuditi 2011), (Mestre 2008a), (Mestre 2008b), (Nadakuditi and Edelman
2008), which we plan to do in future work. Moreover, it would be interesting to relax the assumption
that one can sample from 𝑔∗ in order to estimate ̂∗. For the second point, we plan to investigate how
the idea of the present paper can improve the efficiency of adaptive importance sampling schemes in
high dimensions. In this case, there is an additional difficulty, namely the introduction of likelihood
ratios can lead to the problem of weight degeneracy which is another reason why performance of
such schemes degrades in high dimensions (Bengtsson, Bickel, and Li 2008}).

We note finally that it would be interesting to consider multimodal failure functions 𝜙. Indeed,
with unimodal functions, the light tail of the Gaussian random variable implies that the conditional
variance decreases which explains why, in all our numerical examples with an indicator function, the
highest eigenvalues ranked in ℓ-order are simply the smallest eigenvalues. However, for multimodal
failure functions, we may expect the conditional variance to increase and that the highest eigenvalues
ranked in ℓ-order are actually the largest ones. For multimodal problems, one may want to consider
different parametric families of auxiliary densities, and so it would be interesting to see whether
Theorem 3.1 can be extended to more general cases.
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Appendix A: Proof of Theorem 3.1 and Theorem 3.2

We begin with a preliminary lemma.

Lemma 6.1. Let 𝑓 be the density of the standard Gaussian vector in dimension 𝑛, 𝜙 ∶ ℝ𝑛 → ℝ+ and
𝑔∗ = 𝑓 𝜙/ℰ with ℰ = ∫ 𝑓 𝜙. Then for any m and any of the form = 𝐼𝑛 + ∑𝑖(𝛼𝑖 − 1)d𝑖d⊤𝑖 with 𝛼𝑖 > 0
and the d𝑖’s orthonormal, we have

𝐷(𝑔∗, 𝑔m,) =
1
2
∑
𝑖
(log 𝛼𝑖 − (1 − 1

𝛼𝑖
)d⊤𝑖 ∗d𝑖) +

1
2
(m −m∗)⊤−1(m −m∗)

− 1
2
‖m∗‖2 − logℰ + 𝔼𝑔∗(log 𝜙(X)).

(15)

Proof of Lemma 6.1

For anym ∈ ℝ𝑛 and ∈ 𝒮+
𝑛 , we have by definition

𝐷(𝑔∗, 𝑔m,) = 𝔼𝑔∗ (log (
𝑔∗(X)
𝑔m,(X)

)) = 𝔼𝑔∗
⎛
⎜
⎜
⎝

log
⎛
⎜
⎜
⎝

𝜙(X)𝑒−
1
2 ‖X‖

2

ℰ(2𝜋)𝑛/2

𝑒−
1
2 (X−m)⊤−1(X−m)

(2𝜋)𝑛/2||1/2

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠
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and so
𝐷(𝑔∗, 𝑔m,) = − 1

2
𝔼𝑔∗(‖X‖2) +

1
2
𝔼𝑔∗ ((X −m)⊤−1(X −m))

+ 1
2
log|| − logℰ + 𝔼𝑔∗(log 𝜙(X)).

Because 𝔼𝑔∗(X) = m∗, we have 𝔼𝑔∗(‖X‖2) = 𝔼𝑔∗(‖X −m∗‖2) + ‖m∗‖2 and

𝔼𝑔∗ ((X −m)⊤−1(X −m)) = 𝔼𝑔∗ ((X −m∗)⊤−1(X −m∗)) + (m −m∗)⊤−1(m −m∗).

In the following derivations, we use the linearity of the trace and of the expectation, which
make these two operators commute, as well as the identity 𝑎⊤𝑏 = tr(𝑎𝑏⊤) for any two vectors 𝑎
and 𝑏. With this caveat, we obtain

𝔼𝑔∗ [‖X −m∗‖2] = 𝔼𝑔∗ [tr((X −m∗)(X −m∗)⊤)] = tr(∗)

and we obtain with similar arguments 𝔼𝑔∗((X −m∗)⊤−1(X −m∗)) = tr(−1∗). Consider now
= 𝐼𝑛 +∑𝑖(𝛼𝑖 −1)d𝑖d⊤𝑖 with 𝛼𝑖 > 0 and the d𝑖’s orthonormal. Then the eigenvalues of potentially
different from 1 are the 𝛼𝑖’s (𝛼𝑖 is the eigenvalue associated with d𝑖), so that

log|| = ∑
𝑖
log 𝛼𝑖.

Moreover, we have −1 = 𝐼𝑛 −∑𝑖 𝛽𝑖d𝑖d
⊤
𝑖 with 𝛽𝑖 = 1 − 1/𝛼𝑖 and so

tr(−1∗) = tr(∗) −∑
𝑖
𝛽𝑖d⊤𝑖 ∗d𝑖.

Gathering the previous relation, we finally obtain the desired result.

Proof of Theorem 3.1

From Equation 15 we see that the only dependency of 𝐷(𝑔∗, 𝑔m,) in m is in the quadratic term
(m −m∗)⊤−1(m −m∗). As is definite positive, this term is ≥ 0, and so it is minimized for
m = m∗. Next, we see that the derivative in 𝛼𝑖 is given by (here and in the sequel, we see
𝐷(𝑔∗, 𝑔m,) as a function of v = (𝛼𝑖)𝑖 and d = (d𝑖)𝑖)

𝜕𝐷
𝜕𝛼𝑖

(v,d) = 1
𝛼𝑖

− 1
𝛼2𝑖

d⊤𝑖 ∗d𝑖 =
1
𝛼2𝑖

(𝛼𝑖 − d⊤𝑖 ∗d𝑖) .

Thus, for fixed d, 𝐷 is decreasing in 𝛼𝑖 for 𝛼𝑖 < d⊤𝑖 ∗d𝑖 and then increasing for 𝛼𝑖 > d⊤𝑖 ∗d𝑖, which
shows that, for fixed d, it is minimized for 𝛼𝑖 = d⊤𝑖 ∗d𝑖. For this value (andm = m∗) we have

𝐷(𝑔∗, 𝑔m∗,) =
𝑘
∑
𝑖=1

[log(d⊤𝑖 ∗d𝑖) + 1 − d⊤𝑖 ∗d𝑖] + 𝐶 = −
𝑘
∑
𝑖=1

ℓ(d⊤𝑖 ∗d𝑖) + 𝐶 (16)

with 𝐶 = −1
2 ‖m

∗‖2 − logℰ + 𝔼𝑔∗(log 𝜙(X)) independent from the d𝑖’s. Since ℓ is decreasing
and then increasing, it is clear from this expression that in order to minimize 𝐷, one must
choose the d𝑖’s in order to either maximize or minimize d⊤𝑖 ∗d𝑖, whichever maximizes ℓ. Since
the variational characterization of eigenvalues shows that eigenvectors precisely solve this
problem, we get the desired result.
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Proof of Theorem 3.2

In Equation 15, them∗ and the ∗ that appear in the right-hand side are the mean and variance of
the density 𝑔∗ considered in the first argument of the Kullback–Leibler divergence. In particular,
if we apply Equation 15 with 𝜙 ≡ 1, we have 𝑔∗ = 𝑓, and them∗ and ∗ of the right-hand side
become 0 and 𝐼𝑛, respectively, so that

𝐷(𝑓 , 𝑔m,) =
1
2
∑
𝑖
(log 𝛼𝑖 − (1 − 1

𝛼𝑖
)) + 1

2
m⊤−1m.

Now, if we considerm = m∗ and = 𝐼 + (𝛼 − 1)dd⊤, we obtain (using −1 = 𝐼 − (1 − 1/𝛼)dd⊤ as
mentioned in the proof of Lemma 6.1)

𝐷(𝑓 , 𝑔m∗,) =
1
2
(log 𝛼 − (1 − 1

𝛼
) (1 + (d⊤m∗)2)) + 1

2
‖m∗‖2.

Then the function 𝑥 ↦ log 𝑥 + (1/𝑥 − 1)𝛾 is minimized for 𝑥 = 𝛾 where it takes the value −ℓ(𝛾 ):
𝐷(𝑓 , 𝑔m∗,) is therefore minimized for 𝛼 = 1 + (d⊤m∗)2 and for this value, we have

𝐷(𝑓 , 𝑔m∗,) = −1
2
ℓ(1 + (d⊤m∗)2) + 1

2
‖m∗‖2.

As ℓ is increasing in [1, ∞), this last quantity is minimized by maximizing (d⊤m∗)2, which is
obtained for d = m∗/‖m∗‖. The result is proved.

Appendix B: Choice of the auxiliary density 𝑔 ′ for the von Mises–
Fisher–Nakagami model

Von Mises–Fisher–Nakagami (vMFN) distributions were proposed in (Papaioannou, Geyer, and
Straub 2019) as an alternative to the Gaussian parametric family to perform IS for high dimensional
probability estimation. A random vector X drawn according to the vMFN distribution can be written
as X = 𝑅A where A = X

‖X‖ is a unit random vector following the von Mises–Fisher distribution, and
𝑅 = ‖X‖ is a positive random variable with a Nakagami distribution; further, 𝑅 andA are independent.
The vMFN pdf can be written as

𝑔vMFN(x) = 𝑔N(‖x‖, 𝑝, 𝜔) × 𝑔vMF (
x
‖x‖

, 𝜇, 𝜅) . (17)

The density 𝑔N(‖x‖, 𝑝, 𝜔) is the Nakagami distribution with shape parameter 𝑝 ≥ 0.5 and a spread
parameter 𝜔 > 0 defined by

𝑔N(‖x‖, 𝑝, 𝜔) =
2𝑝𝑝

Γ(𝑝)𝜔𝑝 ‖x‖
2𝑝−1 exp (−

𝑝
𝜔
‖x‖2)

and the density 𝑔vMF(
x
‖x‖ , 𝜇, 𝜅) is the von Mises–Fisher distribution, given by

𝑔vMF (
x
‖x‖

, 𝜇, 𝜅) = 𝐶𝑛(𝜅) exp (𝜅𝜇𝑇
x
‖x||

) ,

where 𝐶𝑛(𝜅) is a normalizing constant, 𝜇 is a mean direction (with ||𝜇|| = 1) and 𝜅 > 0 is a concentration
parameter.

Choosing a vMFN distribution therefore amounts to choosing the parameters 𝑝, 𝜔, 𝜇, and 𝜅. There
are therefore 𝑛 + 3 parameters to estimate, which is a significant reduction compared to the 𝑛(𝑛+3)

2
required parameters of the Gaussian model with full covariance matrix.
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Following (Papaioannou, Geyer, and Straub 2019), given a sample X∗
1 , … ,X∗

𝑀 distributed from 𝑔∗, the
parameters 𝜔, 𝑝, 𝜇 and 𝜅 are set in the following way in order to define 𝑔′:

𝜔 = 1
𝑀

𝑀
∑
𝑖=1

‖X∗
𝑖 ‖2 and ̂𝑝 = 𝜔2

̂𝜏 − 𝜔2 with ̂𝜏 = 1
𝑀

𝑀
∑
𝑖=1

‖X∗
𝑖 ‖4

and

�̂� =
∑𝑀

𝑖=1
X∗
𝑖

||X∗
𝑖 ||

||∑𝑀
𝑖=1

X∗
𝑖

||X∗
𝑖 ||
||

and �̂� =
𝑛 ̂𝜒 − ̂𝜒3

1 − ̂𝜒2 with ̂𝜒 = min (‖ 1
𝑀

𝑀
∑
𝑖=1

X∗
𝑖

‖X∗
𝑖 ‖
‖ , 0.95) .

Appendix C: MCMC sampling

We consider again the test case 1 of Section 5.1 but the samples of 𝑔∗ are no more generated with
rejection sampling but with the Metropolis–Hastings Algorithm. The computational cost to generate
the samples of 𝑔∗ is thus much lower withMCMC but the resulting samples are dependent. Remember
that with rejection sampling, we did not account for the samples generated in the rejection step.
Thus, in order to generate a sample of size 𝑀 = 500 with an acceptance probability of the order of
10−3, of the order of 500, 000 samples are generated. Thus, a fair comparison between the rejection
and MCMC methods would allow to consider sampling 500, 000 times. In practice, we found that
the MCMC method performs reasonably well if we use it as a sampler. More precisely, the sample
(𝑋 ∗

1 , ⋯ , 𝑋 ∗
𝑀) in Section 4.1 is given by (𝑌5𝑘)𝑘=1,⋯,500 where (𝑌𝑖)𝑖=1,⋯,2,500 is the MH Markov chain.

The simulation results are available in Table 7 and leads to the same conclusion as with rejection
sampling.

Table 7: Numerical comparison of the estimation of ℰ ≈ 1.35 ⋅ 10−3 considering the Gaussian model
with the six covariance matrices defined in Section 4.2 and the vFMN model, when 𝜙 = 𝕀𝜑≥0 with 𝜑
the linear function given by Equation 10. As explained in the text, the sample of 𝑔∗ is generated with
MCMC instead of rejection sampling. The computational cost is 𝑁 = 2000.

∗ ̂∗ ̂𝑜𝑝𝑡 ̂𝑚𝑒𝑎𝑛 ̂+𝑑𝑜𝑝𝑡 ̂+𝑑𝑚𝑒𝑎𝑛 vMFN

D’ 97.3 194.9 97.4 97.4 99 98.2 /
Relative
error (%)

-0.1 -99 0.4 0.4 -2.4 -2.1 -
1.0

Coeffi-
cient of
variation
(%)

7.6 101.2 12.2 12.2 18 24.6 12.0
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