
ISSN 2824-7795

Efficient simulation of individual-
based population models
The R package IBMPopSim

Daphné Giorgi1 Laboratoire de Probabilités, Statistique et Modélisation, Sorbonne Université,
CNRS

Sarah Kaakai2 Laboratoire Analyse, Géométrie et Applications, Université Sorbonne Paris Nord,
CNRS

Centre de Mathématiques Appliquées, Ecole Polytechnique, CNRS
Vincent Lemaire 3 Laboratoire de Probabilités, Statistique et Modélisation, Sorbonne Université,

CNRS

Date published: 2024-12-01 Last modified: 2025-01-31

Abstract

The R Package IBMPopSim facilitates the simulation of the random evolution of heterogeneous
populations using stochastic Individual-Based Models (IBMs). The package enables users to
simulate population evolution, in which individuals are characterized by their age and some char-
acteristics, and the population is modified by different types of events, including births/arrivals,
death/exit events, or changes of characteristics. The frequency at which an event can occur to
an individual can depend on their age and characteristics, but also on the characteristics of other
individuals (interactions). Such models have a wide range of applications in fields including
actuarial science, biology, ecology or epidemiology. IBMPopSim overcomes the limitations of
time-consuming IBMs simulations by implementing new efficient algorithms based on thinning
methods, which are compiled using the Rcpp package while providing a user-friendly interface.

Keywords: Individual-based models, stochastic simulation, population dynamics, Poisson measures,
thinning method, actuarial science, insurance portfolio simulation

Contents

1 Introduction 2

2 Brief overview of IBMPopSim 3
2.1 Model creation . 4
2.2 Simulation . 5

1Corresponding author: daphne.giorgi@sorbonne-universite.fr
2Corresponding author: kaakai@math.univ-paris13.fr
3Corresponding author: vincent.lemaire@sorbonne-universite.fr

1

https://orcid.org/0000-0002-0433-7722
mailto:daphne.giorgi@sorbonne-universite.fr
mailto:kaakai@math.univ-paris13.fr
mailto:vincent.lemaire@sorbonne-universite.fr

3 Mathematical framework 5
3.1 Population . 6

3.1.1 Individuals . 6
3.1.2 Population process . 6

3.2 Events . 7
3.3 Events intensity . 8

Events intensity bounds . 10
3.4 Pathwise representation of stochastic IBM . 11

Non-explosion criterion . 11

4 Population simulation 12
4.1 Thinning of Poisson measure . 13

4.1.1 Multivariate Poisson process . 14
4.2 Simulation algorithm . 15

First event simulation . 16
4.3 Simulation algorithm with randomization . 18

5 Model creation and simulation with IBMPopSim 19
5.1 Population . 20
5.2 Events . 21

5.2.1 Intensities . 21
5.2.2 Event kernel code . 23

5.3 Model creation . 24
5.4 Simulation . 25

6 Insurance portfolio 26
6.1 Population . 27
6.2 Events . 27
6.3 Model creation and simulation . 28
6.4 Outputs . 29

7 Population with genetically variable traits 30
7.1 Population . 31
7.2 Events . 32

7.2.1 Birth events . 32
7.2.2 Death events . 32

7.3 Model creation and simulation . 32

8 Appendix 34
8.1 Recall on Poisson random measures . 34

8.1.1 Link with Poisson processes . 35
8.1.2 Marked Poisson measures on 𝐸 = ℝ+ × 𝐹 . 35

8.2 Pathwise representation of IBMs . 36
8.2.1 Proof of Theorem 3.1 . 37
8.2.2 Proof of Lemma 3.1 . 37
8.2.3 Alternative pathwise representation . 39

8.3 Proof of Theorem 4.1 . 39
8.4 Acknowledgements . 41

References 41

2

Session information 42

1 Introduction

In various fields, advances in probability have contributed to the development of a new mathematical
framework for so-called individual-based stochastic population dynamics, also called stochastic
Individual-Based Models (IBMs). Stochastic IBMs allow the modeling in continuous time of popula-
tions dynamics structured by age and/or characteristics. In the field of mathematical biology and
ecology, a large community has used this formalism for the study of the evolution of structured
populations (see e.g. Ferrière and Tran (2009); Collet, Méléard, and Metz (2013); Bansaye and Méléard
(2015); Costa et al. (2016); Billiard et al. (2016); Lavallée et al. (2019); Méléard, Rera, and Roget (2019);
Calvez et al. (2020)), after the pioneer works (Fournier and Méléard 2004; Tran 2008; Méléard and
Tran 2009). IBMs are also useful in demography and actuarial sciences, for the modeling of human
populations dynamics (see e.g. Bensusan (2010); Boumezoued (2016); El Karoui, Hadji, and Kaakai
(2021)).

Indeed, they allow the modeling of heterogeneous and complex population dynamics, which can be
used to compute demographic indicators or simulate the evolution of insurance portfolios in order
to study the basis risk, compute cash flows for annuity products or pension schemes, or for a fine
assessment of mortality models (Barrieu et al. 2012). There are other domains in which stochastic
IBMs can be used, for example in epidemiology with stochastic compartmental models, neurosciences,
cyber risk, or Agent-Based Models (ABMs) in economy and social sciences, which can be seen as
IBMs. Many mathematical results have been obtained in the literature cited above, for quantifying
the limit behaviors of IBMs over long time scales or in large population. In particular, pathwise
representations of IBMs have been introduced in Fournier and Méléard (2004) (and extended to
age-structured populations in Tran (2008); Méléard and Tran (2009)), as measure-valued pure jumps
Markov processes, solutions of SDEs driven by Poisson measures. These pathwise representations
are based on the thinning and projection of Poisson random measures defined on extended spaces.
However, the simulation of large and interacting populations is often computationally expensive.

The aim of the R package IBMPopSim is to meet the needs of the various communities for efficient
tools in order to simulate the evolution of stochastic IBMs. IBMPopSim provides a general framework
for the simulation of a wide class of IBMs, where individuals are characterized by their age and/or a
set of characteristics. Different types of events can be included in the modeling by users, depending
on their needs: births, deaths, entry or exit in/to the population and changes of characteristics
(swap events). Furthermore, the various events that can happen to individuals in the population can
occur at a non-stationary frequency, depending on the individuals’ characteristics and time, and also
including potential interactions between individuals.

We introduce a unifiedmathematical and simulation framework for this class of IBMs, generalizing the
pathwise representation of IBMs by thinning of Poisson measures, as well as the associated population
simulation algorithm, based on an acceptance/rejection procedure. In particular, we provide general
sufficient conditions on the event intensities under which the simulation of a particular model is
possible.

We opted to implement the algorithms of the IBMPopSim package using the Rcpp package, a tool
facilitating the seamless integration of high-performance C++ code into easily callable R functions
(Eddelbuettel and Francois 2011). IBMPopSim offers user-friendly R functions for defining and sim-
ulating IBMs. Once events and their associated intensities are specified, an automated procedure
creates the model. This involves integrating the user’s source code into the primary C++ code using
a template mechanism. Subsequently, Rcpp is invoked to compile the model so that the model is
integrated into the R session and callable with varying parameters, enabling the generation of diverse

3

population evolution scenarios. Combined with the design of the simulation algorithms, the package
structure yields very competitive simulation runtimes for IBMs, while staying user-friendly for R
users. Several outputs function are also implemented in IBMPopSim. For instance the package allows
the construction and visualization of age pyramids, as well as the construction of death and expo-
sures table from the censored individual data, compatible with R packages concerned with mortality
modelling, such as Hyndman et al. (2023) or A. Villegas, Millossovich, and Kaishev Hyndman (2018).
Several examples are provided in the form of R vignettes on the website, and in recent works of El
Karoui, Hadji, and Kaakai (2021) and Roget et al. (2024).

To the best of our knowledge, there are no other R packages currently available addressing the issue
of stochastic IBMs efficient simulation. Another approach for simulating populations is continuous
time microsimulation in social sciences, which is implemented in the R package MicSim (Zinn 2014).
In this framework, individual life-courses are specified by sequences of state transitions (events) and
the time spans between these transitions. The state space is usually discrete and finite, which is
not necessarily the case in IBMPopSim, where individuals can have continuous characteristics. But
most importantly, microsimulation does not allow for interactions between individuals. Indeed,
microsimulation produces separately the life courses of all individuals in the populations, based
on the computation of the distribution functions of the waiting times in the distinct states of the
state space, for each individual (Zinn 2014). This can be slow in comparison to the simulation by
thinning of event times occurring in the population, which is based on selecting event times among
some competing proposed event times. Finally, MicSim simplifies the Mic-Core microsimulation tool
implemented in Java (Zinn et al. 2009). However, the implementation in R of simulation algorithms
yields longer simulation run times than when using Rcpp.

In Section 2, we give a short description of Stochastic Individual-Based Models (IBMs) and a quick
example of model implementation with the IBMPopSim package. In Section 3, we introduce the math-
ematical framework that characterizes the class of IBMs that can be implemented in the IBMPopSim
package. In particular, a general pathwise representation of IBMs is presented. The population
dynamics is obtained as the solution of an SDE driven by Poisson measures, for which we obtain
existence and uniqueness results in Theorem 3.1. In Section 4 the two main algorithms for simulating
the population evolution of an IBM across the interval [0, 𝑇] are detailed. In Section 5 we present
the main functions of the IBMPopSim package, which allow for the definition of events and their
intensities, the creation of a model, and the simulation of scenarios. Two examples are detailed
in Section 6 and Section 7, featuring applications involving an heterogeneous insurance portfolio
characterized by entry and exit events, and an age and size-structured population with intricate
interactions.

2 Brief overview of IBMPopSim

Stochastic Individual-Based Models (IBMs) represent a broad class of random population dynamics
models, allowing the description of population evolution on an individual scale. Informally, an IBM
can be summarized by the description of the individuals constituting the population, the various
types of events that can occur to these individuals, along with their respective frequencies. In
IBMPopSim, individuals can be characterized by their age and/or a collection of discrete or continuous
characteristics. Moreover, the package enables users to simulate efficiently populations in which one
or more of the following event types may occur:

• Birth event: addition of an individual of age 0 to the population.
• Death event: removal of an individual from the population.
• Entry event: arrival of an individual in the population.
• Exit (emigration) event: exit from the population (other than death).

4

https://daphnegiorgi.github.io/IBMPopSim/

• Swap event: an individual changes characteristics.

Each event type is linked to an associated event kernel, describing how the population is modified
following the occurrence of the event. For some event types, the event kernel requires explicit
specification. This is the case for entry events when a new individual joins the population, which
requires to specify the age and characteristics of this new individual. For instance, the characteristics
of a new individual in the population can be chosen uniformly in the space of all characteristics,
or can depend on the distribution of his parents or those of the other individuals composing the
population.

The last component of an IBM are the event intensities. Informally, an event intensity is a function
𝜆𝑒𝑡 (𝐼 , 𝑍) describing the frequency at which an event 𝑒 can occur to an individual 𝐼 in a population 𝑍 at
a time 𝑡. Given a history of the population (ℱ𝑡), the probability of event 𝑒 occurring to individual 𝐼
during a small interval of time (𝑡, 𝑡 + 𝑑𝑡] is proportional to 𝜆𝑒(𝐼 , 𝑡):

ℙ(event 𝑒 occurring to 𝐼 during (𝑡, 𝑡 + 𝑑𝑡]|ℱ𝑡) ≃ 𝜆𝑒𝑡 (𝐼 , 𝑍)𝑑𝑡.

The intensity function 𝜆𝑒 can include various dependencies:

• individual intensity: 𝜆𝑒 depends only on the individual’s 𝐼 age and characteristics, and time 𝑡,
• interaction intensity: in addition 𝜆𝑒 depends on the population composition 𝑍.

Prior to providing a detailed description of an Individual-Based Model (IBM), we present a simple
model of birth and death in an age-structured human population. We assume no interactions
between individuals, and individuals are characterized by their gender, in addition to their age. In
this simple model, all individuals, regardless of gender, can give birth when their age falls between
15 and 40 years, with a constant birth rate of 0.05. The death intensity is assumed to follow a
Gompertz-type intensity depending on age. The birth and death intensities are then given by

𝜆𝑏(𝑡, 𝐼) = 0.05 × 1[15,40](𝑎(𝐼 , 𝑡)), 𝜆𝑑(𝑡, 𝐼) = 𝛼 exp(𝛽𝑎(𝐼 , 𝑡)),

with 𝑎(𝐼 , 𝑡) the age of individual 𝐼 at time 𝑡. Birth events are also characterized with a kernel
determining the gender of the newborn, who is male with probability 𝑝𝑚𝑎𝑙𝑒.

2.1 Model creation

All models in IBMPopSim are created with a call to the mk_model function, which takes the list of
events as an argument. In this example, the events are created with the mk_event_individual
function, involving a few lines of cpp instructions defining the intensity and, if applicable, the kernel
of the event. For a more in depth description of the event creation step and its parameters, we refer
to Section 5.2.

The events of this simple model are for example defined through the following calls.

birth_event <- mk_event_individual(
type = "birth",
intensity_code = "result = birth_rate(I.age(t));",
kernel_code = "newI.male = CUnif(0,1) < p_male;")

death_event <- mk_event_individual(
type = "death",
intensity_code = "result = alpha * exp(beta * I.age(t));")

In the cpp codes, the names birth_rate, p_male, alpha and beta refer to the model parameters
defined in the following list.

5

params <- list(
"alpha" = 0.008, "beta" = 0.02,
"p_male" = 0.51,
"birth_rate" = stepfun(c(15, 40), c(0, 0.05, 0)))

In a second step, the model is created by calling the function mk_model. A cpp source code is auto-
matically created through a template mechanism based on the events and parameters, subsequently
compiled using the sourceCpp function from the Rcpp package.

birth_death_model <- mk_model(
characteristics = c("male" = "bool"),
events = list(death_event, birth_event),
parameters = params)

2.2 Simulation

Once the model is created and compiled, the popsim function is called to simulate the evolution
of a population according to this model. To achieve this, an initial population must be defined. In
this example, we extract a population from a dataset specified in the package (a sample of 100 000
individuals based on the population of England and Wales in 2014). It is also necessary to set bounds
for the events intensities. In this example, they are obtained by assuming that the maximum age for
an individual is 115 years.

a_max <- 115
events_bounds = c(
"death" = params$alpha * exp(params$beta * a_max),
"birth" = max(params$birth_rate))

The function popsim can now be called to simulate the population starting from the initial population
population(EW_pop_14$sample) up to time 𝑇 = 30.

sim_out <- popsim(
birth_death_model,
population(EW_pop_14$sample),
events_bounds,
parameters = params, age_max = a_max,
time = 30)

The data frame sim_out$population contains the information (birth, death, gender) on individuals
who lived in the population over the period [0, 30]. Functions of the package allows to provide
aggregated information on the population.

3 Mathematical framework

In this section, we define rigorously the class of IBMs that can be simulated in IBMPopSim, along with
the assumptions that are required in order for the population to be simulatable. The representation of
age-structured IBMs based on measure-valued processes, as introduced in Tran (2008), is generalized
to a wider class of abstract population dynamics. The modeling differs slightly here, since individuals
are kept in the population after their death (or exit), by including the death/exit date as an individual
trait.

In the remainder of the paper, the filtered probability space is denoted by (Ω, {ℱ𝑡}, ℙ), under the
usual assumptions. All processes are assumed to be càdlàg and adapted to the filtration {ℱ𝑡} (for

6

instance the history of the population) on a time interval [0, 𝑇]. For a càdlàg process 𝑋, we denote
𝑋𝑡− ∶= lim 𝑠→𝑡

𝑠<𝑡
𝑋𝑠.

3.1 Population

As mentioned in Section 2 a population is a collection of individuals whose evolution defines the
population process.

3.1.1 Individuals

An individual is represented by a triplet 𝐼 = (𝜏 𝑏, 𝜏 𝑑, 𝑥) ∈ ℐ = ℝ × ℝ̄ × 𝒳 with:

• 𝜏 𝑏 ∈ ℝ the date of birth,
• 𝜏 𝑑 ∈ ℝ̄ the death date, with 𝜏 𝑑 = ∞ if the individual is still alive,
• a collection 𝑥 ∈ 𝒳 of characteristics where 𝒳 is the space of characteristics.

Note that in IBMs, individuals are usually characterized by their age 𝑎(𝑡) = 𝑡 − 𝜏 𝑏 instead of their
date of birth 𝜏 𝑏. However, using the latter is actually easier for the simulation, as it remains constant
over time.

3.1.2 Population process

The population at a given time 𝑡 is a random set

𝑍𝑡 = {𝐼𝑘 ∈ ℐ ; 𝑘 = 1, … , 𝑁𝑡},

composed of all individuals (alive or dead) who have lived in the population before time 𝑡. As a
random set, 𝑍𝑡 can be represented by a random counting measure on ℐ , that is an integer-valued
measure 𝑍 ∶ Ω × ℐ → ℕ̄ where for 𝐴 ∈ ℐ, 𝑍(𝐴) is the (random) number of individuals 𝐼 in the
subset 𝐴. With this representation:

𝑍𝑡(d𝜏 𝑏, d𝜏 𝑑, d𝑥) =
𝑁𝑡

∑
𝑘=1

𝛿𝐼𝑘(𝜏
𝑏, 𝜏 𝑑, 𝑥),

with ∫
ℐ
𝑓 (𝜏 𝑏, 𝜏 𝑑, 𝑥)𝑍𝑡(d𝜏 𝑏, d𝜏 𝑑, d𝑥) =

𝑁𝑡

∑
𝑘=1

𝑓 (𝐼𝑘).

(1)

The number of individuals present in the population before time 𝑡 is obtained by taking 𝑓 ≡ 1:

𝑁𝑡 = ∫
ℐ
𝑍𝑡(d𝜏 𝑏, d𝜏 𝑑, d𝑥) =

𝑁𝑡

∑
𝑘=1

1ℐ(𝐼𝑘).

Note that (𝑁𝑡)𝑡≥0 is an increasing process since dead/exited individuals are kept in the population 𝑍.
The number of alive individuals in the population at time 𝑡 is:

𝑁 𝑎
𝑡 = ∫

ℐ
1{𝜏 𝑑>𝑡}𝑍𝑡(d𝜏

𝑏, d𝜏 𝑑, d𝑥) =
𝑁𝑡

∑
𝑘=1

1{𝜏 𝑑𝑘>𝑡}. (2)

Another example is the number of alive individuals of age over 𝑎 is

𝑁𝑡([𝑎, +∞)) ∶= ∫
ℐ
1[𝑎,+∞)(𝑡 − 𝜏 𝑏)1]𝑡,∞](𝜏 𝑑)𝑍𝑡(d𝜏 𝑏, d𝜏 𝑑, d𝑥) =

𝑁𝑡

∑
𝑘=1

1{𝑡−𝜏 𝑏𝑘≥𝑎}1{𝜏 𝑑𝑘≥𝑡}.

7

3.2 Events

The population composition changes at random dates following different types of events. IBMPopSim
allows the simulation of IBMs with the following events types:

• A birth event at time 𝑡 is the addition of a new individual 𝐼 ′ = (𝑡, ∞, 𝑋) of age 0 to the population.
Their date of birth is 𝜏 𝑏 = 𝑡, and characteristics is 𝑋, a random variable of distribution defined
by the birth kernel 𝑘𝑏(𝑡, 𝐼 , d𝑥) on 𝒳, depending on 𝑡 and its parent 𝐼. The population size
becomes 𝑁𝑡 = 𝑁𝑡− + 1, and the population composition after the event is

𝑍𝑡 = 𝑍𝑡− + 𝛿(𝑡,∞,𝑋).

• An entry event at time 𝑡 is also the addition of an individual 𝐼 ′ in the population. However,
this individual is not of age 0. The date of birth and characteristics of the new individual
𝐼 ′ = (𝜏 𝑏, ∞, 𝑋) are random variables of probability distribution defined by the entry kernel
𝑘𝑒𝑛(𝑡, d𝑠, d𝑥) onℝ×𝒳. The population size becomes𝑁𝑡 = 𝑁𝑡−+1, and the population composition
after the event is:

𝑍𝑡 = 𝑍𝑡− + 𝛿(𝜏 𝑏,∞,𝑋).

• A death or exit event of an individual 𝐼 = (𝜏 𝑏, ∞, 𝑥) ∈ 𝑍𝑡− at time 𝑡 is the modification of its
death date 𝜏 𝑑 from +∞ to 𝑡. This event results in the simultaneous addition of the individual
(𝜏 𝑏, 𝑡 , 𝑥) and removal of the individual 𝐼 from the population. The population size is not
modified, and the population composition after the event is

𝑍𝑡 = 𝑍𝑡− + 𝛿(𝜏 𝑏,𝑡 ,𝑥) − 𝛿𝐼.

• A swap event (change of characteristics) results in the simultaneous addition and removal of
an individual. If an individual 𝐼 = (𝜏 𝑏, ∞, 𝑥) ∈ 𝑍𝑡− changes of characteristics at time 𝑡, then it is
removed from the population and replaced by 𝐼 ′ = (𝜏 𝑏, ∞, 𝑋). The new characteristics 𝑋 is a
random variable of distribution 𝑘𝑠(𝑡, 𝐼 , d𝑥) on 𝒳, depending on time, the individual’s age and
previous characteristics 𝑥. In this case, the population size is not modified and the population
becomes:

𝑍𝑡 = 𝑍𝑡− + 𝛿(𝜏 𝑏,∞,𝑋) − 𝛿(𝜏 𝑏,∞,𝑥).

To summarize, the space of event types is 𝐸 = {𝑏, 𝑒𝑛, 𝑑, 𝑠}, and the jump Δ𝑍𝑡 = 𝑍𝑡 − 𝑍𝑡− (change in the
population composition) generated by an event of type 𝑒 ∈ {𝑏, 𝑒𝑛, 𝑑, 𝑠} is denoted by 𝜙𝑒(𝑡, 𝐼). We thus
have the following rules summarized in Table 1.

Table 1: Action in the population for a given event type

Event Type 𝜙𝑒(𝑡, 𝐼) New individual

Birth 𝑏 𝛿(𝑡,∞,𝑋) 𝜏 𝑏 = 𝑡, 𝑋 ∼ 𝑘𝑏(𝑡, 𝐼 , d𝑥)
Entry 𝑒𝑛 𝛿(𝜏 𝑏,∞,𝑋) (𝜏 𝑏, 𝑋) ∼ 𝑘𝑒𝑛(𝑡, d𝑠, d𝑥)
Death/Exit 𝑑 𝛿(𝜏 𝑏,𝑡 ,𝑥) − 𝛿(𝜏 𝑏,∞,𝑥) 𝜏 𝑑 = 𝑡
Swap 𝑠 𝛿(𝜏 𝑏,∞,𝑋) − 𝛿(𝜏 𝑏,∞,𝑥) 𝑋 ∼ 𝑘𝑠(𝑡, 𝐼 , d𝑥)

Remark 3.1 (Composition of the population).

8

• At time 𝑇, the population 𝑍𝑇 contains all individuals who lived in the population before 𝑇,
including dead/exited individuals. If there are no swap events, or entries, the population state
𝑍𝑡 for any time 𝑡 ≤ 𝑇 can be obtained from 𝑍𝑇. Indeed, if 𝑍𝑇 = ∑𝑁𝑇

𝑘=1 𝛿𝐼𝑘 , then the population at
time 𝑡 ≤ 𝑇 is simply composed of the individuals born before 𝑡:

𝑍𝑡 =
𝑁𝑇

∑
𝑘=1

1{𝜏 𝑏𝑘≤𝑡}𝛿𝐼𝑘 .

• In the presence of entries (open population), a characteristic 𝑥 can track the individuals’ entry
dates. Then, the previous equation can be easily modified in order to obtain the population 𝑍𝑡
at time 𝑡 ≤ 𝑇 from 𝑍𝑇.

3.3 Events intensity

Once the different event types have been defined in the population model, the frequency at which
each event 𝑒 occurs in the population has to be specified. Informally, the intensity Λ𝑒

𝑡 (𝑍𝑡) at which an
event 𝑒 can occur is defined by

ℙ(event 𝑒 occurs in the population 𝑍𝑡 ∈ (𝑡, 𝑡 + d𝑡]|ℱ𝑡) ≃ Λ𝑒
𝑡 (𝑍𝑡)d𝑡 .

For a more formal definition of stochastic intensities, we refer to Brémaud (1981) or Kaakai and El
Karoui (2023). The form of the intensity function (Λ𝑒

𝑡 (𝑍𝑡)) determines the population simulation
algorithm in IBMPopSim:

• When the event intensity does not depend on the population state,

(Λ𝑒
𝑡 (𝑍𝑡))𝑡∈[0,𝑇] = (𝜇𝑒(𝑡))𝑡∈[0,𝑇], (3)

with 𝜇𝑒 a deterministic function, the events of type 𝑒 occur at the jump times of an inhomoge-
neous Poisson process of intensity function (𝜇𝑒(𝑡))𝑡∈[0,𝑇]. This is particularly useful when entry
events occur with intensities influenced by environmental processes and/or exhibit seasonal
variations. When such an event occurs, the individual to whom the event happens is drawn
uniformly from the living individuals in the population. In a given model, the set of events
𝑒 ∈ 𝐸 with Poisson intensities will be denoted by 𝒫.

• Otherwise, we assume that the global intensity Λ𝑒
𝑡 (𝑍𝑡) at which the events of type 𝑒 occur in

the population can be written as the sum of individual intensities 𝜆𝑒𝑡 (𝐼 , 𝑍𝑡):

Λ𝑒
𝑡 (𝑍𝑡) =

𝑁𝑡

∑
𝑘=1

𝜆𝑒𝑡 (𝐼𝑘, 𝑍𝑡),

with ℙ(event 𝑒 occurs to an individual 𝐼 ∈ (𝑡, 𝑡 + d𝑡]|ℱ𝑡) ≃ 𝜆𝑒𝑡 (𝐼 , 𝑍𝑡)d𝑡 .

(4)

Obviously, nothing can happen to dead or exited individuals, i.e. individuals 𝐼 = (𝜏 𝑏, 𝜏 𝑑, 𝑥) with 𝜏 𝑑 ≤ 𝑡.
Thus, individual event intensities are assumed to be null for dead/exited individuals:

𝜆𝑒𝑡 (𝐼 , 𝑍𝑡) = 0, if 𝜏 𝑑 ≤ 𝑡, so that Λ𝑒
𝑡 (𝑍𝑡) =

𝑁 𝑎
𝑡

∑
𝑘=1

𝜆𝑒𝑡 (𝐼𝑘, 𝑍𝑡),

with 𝑁 𝑎
𝑡 the number of alive individuals at time 𝑡.

The event’s individual intensity 𝜆𝑒𝑡 (𝐼 , 𝑍𝑡) can depend on time (for instance when there is a mortality
reduction over time), on the individual’s age 𝑡 − 𝜏 𝑏 and characteristics, but also on the population
composition 𝑍𝑡. The dependence of 𝜆𝑒 on the population 𝑍models interactions between individuals in
the populations. Hence, two types of individual intensity functions can be implemented in IBMPopSim:

9

1. No interactions: The intensity function 𝜆𝑒 does not depend on the population composition. The
intensity at which an event of type 𝑒 occurs to an individual 𝐼 only depends on its date of birth
and characteristics:

𝜆𝑒𝑡 (𝐼 , 𝑍𝑡) = 𝜆𝑒(𝑡, 𝐼), (5)

where 𝜆𝑒 ∶ ℝ+ × ℐ → ℝ+ is a deterministic function. In a given model, we denote by ℰ the set
of event types with individual intensity Equation 5.

2. “Quadratic” interactions: The intensity at which an event of type 𝑒 occurs to an individual 𝐼
depends on 𝐼 and on the population composition, through an interaction function 𝑊 𝑒. The
quantity 𝑊 𝑒(𝑡, 𝐼 , 𝐽) describes the intensity of interactions between two alive individuals 𝐼 and
𝐽 at time 𝑡, for instance in the presence of competition or cooperation. In this case, we have

𝜆𝑒𝑡 (𝐼 , 𝑍𝑡) =
𝑁𝑡

∑
𝑗=1

𝑊 𝑒(𝑡, 𝐼 , 𝐼𝑗) = ∫
ℐ
𝑊 𝑒(𝑡, 𝐼 , (𝜏 𝑏, 𝜏 𝑑, 𝑥))𝑍𝑡(d𝜏 𝑏, d𝜏 𝑑, d𝑥), (6)

where𝑊 𝑒(𝑡, 𝐼 , (𝜏 𝑏, 𝜏 𝑑, 𝑥)) = 0 if the individual 𝐽 = (𝜏 𝑏, 𝜏 𝑑, 𝑥) is dead, i.e. 𝜏 𝑑 ≤ 𝑡. In a given model,
we denote by ℰ𝑊 the set of event types with individual intensity Equation 6.

To summarize, an individual intensity in IBMPopSim can be written as:

𝜆𝑒𝑡 (𝐼 , 𝑍𝑡) = 𝜆𝑒(𝑡, 𝐼)1{𝑒∈ℰ} + (
𝑁𝑡

∑
𝑗=1

𝑊 𝑒(𝑡, 𝐼 , 𝐼𝑗))1{𝑒∈ℰ𝑊}. (7)

Example 3.1.

1. An example of death intensity without interaction for an individual 𝐼 = (𝜏 𝑏, 𝜏 𝑑, 𝑥) alive at time
𝑡, 𝑡 < 𝜏 𝑑, is:

𝜆𝑑(𝑡, 𝐼) = 𝛼𝑥 exp(𝛽𝑥𝑎(𝐼 , 𝑡)), where 𝑎(𝐼 , 𝑡) = 𝑡 − 𝜏 𝑏

is the age of the individual 𝐼 at time 𝑡. In this standard case, the death rate of an individual 𝐼 is
an exponential (Gompertz) function of the individual’s age, with coefficients depending on the
individual’s characteristics 𝑥.

2. In the presence of competition between individuals, the death intensity of an individual 𝐼 also
depends on other individuals 𝐽 in the population. For example, if 𝐼 = (𝜏 𝑏, 𝜏 𝑑, 𝑥), with its size 𝑥,
then we have:

𝑊 𝑑(𝑡, 𝐼 , 𝐽) = (𝑥𝐽 − 𝑥)+1{𝜏 𝑑𝐽>𝑡}, ∀ 𝐽 = (𝜏 𝑏𝐽 , 𝜏
𝑑
𝐽 , 𝑥𝐽). (8)

This can be interpreted as follows: if the individual 𝐼 meets randomly an individual 𝐽 alive at
time 𝑡, and of bigger size 𝑥𝐽 > 𝑥, then he can die at the intensity 𝑥𝐽 − 𝑥. If 𝐽 is smaller than 𝐼,
then it cannot kill 𝐼. The bigger is the size 𝑥 of 𝐼, the lower is its death intensity 𝜆𝑑𝑡 (𝐼 , 𝑍𝑡) defined
by

𝜆𝑑𝑡 (𝐼 , 𝑍𝑡) = ∑
𝐽∈𝑍𝑡,
𝑥𝐽>𝑥

(𝑥𝐽 − 𝑥)1{𝜏 𝑑𝐽>𝑡}.

3. IBMPopSim can simulate IBMs that include intensities expressed as a sum of Poisson intensities
and individual intensities of the formΛ𝑒(𝑍𝑡) = 𝜇𝑒𝑡 +∑

𝑁𝑡
𝑘=1 𝜆

𝑒(𝐼𝑘, 𝑍𝑡). Other examples are provided
in Section 6 and Section 7.

Finally, the global intensity at which an event can occur in the population is defined by:

Λ𝑡(𝑍𝑡) = ∑
𝑒∈𝒫

𝜇𝑒(𝑡) + ∑
𝑒∈ℰ

(
𝑁𝑡

∑
𝑘=1

𝜆𝑒(𝑡, 𝐼𝑘)) + ∑
𝑒∈ℰ𝑊

(
𝑁𝑡

∑
𝑘=1

𝑁𝑡

∑
𝑗=1

𝑊 𝑒(𝑡, 𝐼𝑘, 𝐼𝑗)). (9)

10

An important point is that for events 𝑒 ∈ ℰ without interactions, the global event intensity Λ𝑒
𝑡 (𝑍𝑡) =

∑𝑁𝑡
𝑘=1 𝜆

𝑒(𝑡, 𝐼𝑘) is of order 𝑁 𝑎
𝑡 defined in Equation 2 (number of alive individuals at time 𝑡). On the

other hand, for events 𝑒 ∈ ℰ𝑊 with interactions, Λ𝑒
𝑡 (𝑍𝑡) = ∑𝑁𝑡

𝑘=1∑
𝑁𝑡
𝑗=1𝑊 𝑒(𝑡, 𝐼𝑘, 𝐼𝑗) is of order (𝑁 𝑎

𝑡)2.
Informally, this means that when the population size increases, events with interaction are more
costly to simulate. Furthermore, the numerous computations of the interaction kernel 𝑊 𝑒 can also be
computationally costly. The randomized Algorithm 3 , detailed in Section 4.3, allows us to overcome
these limitations.

Events intensity bounds

The simulation algorithms implemented in IBMPopSim are based on an acceptance/rejection procedure,
which requires the user to specify bounds for the various events intensities Λ𝑒

𝑡 (𝑍𝑡). These bounds are
defined differently depending on the expression of the intensity.

Assumption 3.1. For all events 𝑒 ∈ 𝒫 with Poisson intensity (Equation 3), the intensity is assumed to
be bounded on [0, 𝑇]:

∀𝑡 ∈ [0, 𝑇], Λ𝑒
𝑡 (𝑍𝑡) = 𝜇𝑒(𝑡) ≤ ̄𝜇𝑒.

When 𝑒 ∈ ℰ ∪ ℰ𝑊, Λ𝑒
𝑡 (𝑍𝑡) = ∑𝑁𝑡

𝑘=1 𝜆
𝑒
𝑡 (𝐼𝑘, 𝑍𝑡), assuming that Λ𝑒

𝑡 (𝑍𝑡) is uniformly bounded is too
restrictive since the event intensity depends on the population size. In this case, the assumption is
made on the individual intensity 𝜆𝑒 or on the interaction function 𝑊 𝑒, depending on the situation.

Assumption 3.2. For all event types 𝑒 ∈ ℰ, the associated individual event intensity 𝜆𝑒 with no
interactions (Equation 5) is assumed to be uniformly bounded:

𝜆𝑒(𝑡, 𝐼) ≤ �̄�𝑒, ∀ 𝑡 ∈ [0, 𝑇], 𝐼 ∈ ℐ .

In particular,

∀𝑡 ∈ [0, 𝑇], Λ𝑒
𝑡 (𝑍𝑡) =

𝑁𝑡

∑
𝑘=1

𝜆𝑒(𝑡, 𝐼) ≤ �̄�𝑒𝑁𝑡. (10)

Assumption 3.3. For all event types 𝑒 ∈ ℰ𝑊, the associated interaction function 𝑊 𝑒 is assumed to be
uniformly bounded:

𝑊 𝑒(𝑡, 𝐼 , 𝐽) ≤ �̄� 𝑒, ∀ 𝑡 ∈ [0, 𝑇], 𝐼 , 𝐽 ∈ ℐ .

In particular, ∀𝑡 ∈ [0, 𝑇],

𝜆𝑒𝑡 (𝐼 , 𝑍𝑡) =
𝑁𝑡

∑
𝑗=1

𝑊 𝑒(𝑡, 𝐼 , 𝐼𝑗) ≤ �̄� 𝑒𝑁𝑡, and Λ𝑒
𝑡 (𝑍𝑡) ≤ �̄� 𝑒(𝑁𝑡)2.

Assumption 3.1, Assumption 3.2 and Assumption 3.3 yield that events in the population occur with
the global event intensity Λ𝑡(𝑍𝑡), given in Equation 9, which is dominated by a polynomial function
in the population size:

Λ𝑡(𝑍𝑡) ≤ Λ̄(𝑁𝑡), with Λ̄(𝑛) = ∑
𝑒∈𝒫

̄𝜇𝑒 + ∑
𝑒∈ℰ

�̄�𝑒𝑛 + ∑
𝑒∈ℰ𝑊

�̄� 𝑒𝑛2. (11)

This bound is linear in the population size if there are no interactions, and quadratic if there at
least is an event including interactions. This assumption is the key to the algorithms implemented
in IBMPopSim. Before presenting the simulation algorithm, we close this section with a rigorous
definition of an IBM, based on the pathwise representation of its dynamics as a Stochastic Differential
Equation (SDE) driven by Poisson random measures.

11

3.4 Pathwise representation of stochastic IBM

Since the seminal paper of Fournier and Méléard (2004), it has been shown that a stochastic IBM
dynamics can be defined rigorously as the unique solution of an SDE driven by Poisson measures,
under reasonable non explosion conditions. This representation has actually been proved only in
particular case, for various models. We provide here a general mathematical framework.
Some recalls on Poisson random measures are presented in the Appendix Section 8.1, and for more
details on these representations of particular examples, we refer to the abundant literature on the
subject (see (Brémaud 1981; Çinlar 2011) and the references therein).

In the following we consider an individual-based stochastic population (𝑍𝑡)𝑡∈[0,𝑇], keeping the
notations introduced in Section 3.2 and Section 3.3 for the events and their intensities. In particular,
the set of events types that define the population evolution is denoted by 𝒫 ∪ ℰ ∪ ℰ𝑊 ⊂ 𝐸, with 𝒫
the set of events types with Poisson intensity verifying Assumption 3.1, ℰ the set of events types
with individual intensity and no interaction, verifying Assumption 3.2 and finally ℰ𝑊 the set of event
types with interactions, verifying Assumption 3.3.

Non-explosion criterion

First, one has to ensure that the number of events occurring in the population will not explode
in finite time, leading to an infinite simulation time. Assumption 3.2 and Assumption 3.3 are not
sufficient to guarantee the non explosion of the event number, due to the potential explosion of the
population size in the presence of interactions. An example is the case when only birth events occur,
with an intensity Λ𝑏

𝑡 (𝑍𝑡) = 𝐶𝑏(𝑁 𝑎
𝑡)2 (i.e. when 𝑊 𝑏(𝑡, 𝐼 , 𝐽) = 𝐶𝑏). Then, the number of alive individuals

(𝑁 𝑎
𝑡)𝑡≥0 is a well-known pure birth process of intensity function 𝑔(𝑛) = 𝐶𝑏𝑛2 (intensity of moving

from state 𝑛 to 𝑛 + 1). This process explodes in finite time, since 𝑔 does not verify the necessary and
sufficient non explosion criterion for pure birth Markov processes: ∑∞

𝑛=1
1

𝑔(𝑛) = ∞ (see e.g. Theorem
2.2 in (Bansaye and Méléard 2015)). There is thus an explosion in finite time of birth events.

This example shows that the important point for non explosion is to control the population size.
We give below a general sufficient condition on birth and entry event intensities, in order for the
population size to stay finite in finite time. This ensures that the number of events does not explode
in finite time. Informally, the idea is to control the intensities by a pure birth intensity function
verifying the non-explosion criterion.

Assumption 3.4. Let 𝑒 ∈ {𝑏, 𝑒𝑛} a birth or entry event type. If the intensity at which the events of type 𝑒
occur in the population are not Poissonian, i.e. 𝑒 ∈ ℰ∪ℰ𝑊, then there exists a function 𝑓 𝑒 ∶ ℕ → (0, +∞),
such that ∞

∑
𝑛=1

1
𝑛𝑓 𝑒(𝑛)

= ∞,

and for all individual 𝐼 ∈ ℐ and population measure 𝑍 = ∑𝑛
𝑘=1 𝛿𝐼𝑘 of size 𝑛,

𝜆𝑒𝑡 (𝐼 , 𝑍) ≤ 𝑓 𝑒(𝑛), ∀ 0 ≤ 𝑡 ≤ 𝑇 .

If 𝑒 ∈ ℰ, 𝜆𝑒𝑡 (𝐼 , 𝑍) = 𝜆𝑒(𝑡, 𝐼) ≤ �̄�𝑒 by the domination Assumption 3.3, then Assumption 3.4 is always
verified with 𝑓 𝑒(𝑛) = �̄�𝑒.

Assumption 3.4 yields that the global intensity Λ𝑒
𝑡 (⋅) of event 𝑒 is bounded by a function 𝑔𝑒 only

depending on the population size:

Λ𝑒
𝑡 (𝑍) ≤ 𝑔𝑒(𝑛) ∶= 𝑛𝑓 𝑒(𝑛), with

∞
∑
𝑛=1

1
𝑔𝑒(𝑛)

= ∞.

12

If 𝑒 ∈ 𝒫 has a Poisson intensity, then Λ𝑒
𝑡 (𝑍) = 𝜇𝑒𝑡 always verifies the previous equation with

𝑔𝑒(𝑛) = ̄𝜇𝑒.

Before introducing the IBM SDE, let us give an idea of the equation construction. Between two
successive events, the population composition 𝑍𝑡 stays constant, since the population process (𝑍𝑡)𝑡≥0
is a pure jump process. Furthermore, since each event type is characterized by an intensity function,
the jumps occurring in the population can be represented by restriction and projection of a Poisson
measure defined on a larger state space. More precisely, we introduce a random Poisson measure 𝑄
on ℝ+ × 𝒥 × ℝ+, with 𝒥 = ℕ × (ℰ ∪ ℰ𝑊). 𝑄 is composed of random quadruplets (𝜏 , 𝑘, 𝑒, 𝜃), where 𝜏
represents a potential event time for an individual 𝐼𝑘 and event type 𝑒. The last variable 𝜃 is used to
accept/reject this proposed event, depending on the event intensity. Hence, the Poisson measure is
restricted to a certain random set and then projected on the space of interest ℝ+ × 𝒥. If the event is
accepted, then a jump 𝜙𝑒(𝜏 , 𝐼𝑘) occurs.

Theorem 3.1 (Pathwise representation). Let 𝑇 ∈ ℝ+ and 𝒥 = ℕ × (ℰ ∪ ℰ𝑊). Let 𝑄 be a random
Poisson measure on ℝ+ × 𝒥 × ℝ+, of intensity d𝑡𝛿𝒥(d𝑘, d𝑒)(𝜃)d𝜃, with 𝛿𝒥 the counting measure on 𝒥.
Finally, let 𝑄𝒫 be a random Poisson measure on ℝ+ ×𝒫 ×ℝ+, of intensity d𝑡𝛿𝑃(d𝑒)d𝜃, and 𝑍0 = ∑𝑁0

𝑘=1 𝛿𝐼𝑘
an initial population. Then, under Assumption 3.4 , there exists a unique measure-valued population
process 𝑍, strong solution on the following SDE driven by the Poisson measure 𝑄:

𝑍𝑡 = 𝑍0 + ∫
𝑡

0
∫
𝒥 ×ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝑘≤𝑁𝑠−}1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,𝑍𝑠−)}𝑄(d𝑠, d𝑘, d𝑒, d𝜃)

+ ∫
𝑡

0
∫
𝒫 ×ℝ+

𝜙𝑒(𝑠, 𝐼𝑠−)1{𝜃≤𝜇𝑒(𝑠)}𝑄𝒫(d𝑠, d𝑒, d𝜃), ∀0 ≤ 𝑡 ≤ 𝑇 ,
(12)

and where 𝐼𝑠− is an individual, chosen uniformly among alive individuals in the population 𝑍𝑠− .

The proof of Theorem 3.1 is detailed in the Appendix, Section 8.2.1. Note that Equation 12 is an SDE
describing the evolution of the IBM, the intensity of the events in the right hand side of the equation
depending on the population process 𝑍 itself. The main idea of the proof of Theorem 3.1 is to use
the non explosion property of Lemma 3.1, and to write the r.h.s of Equation 12 as a sum of simple
equations between two successive events, solved by induction.

Lemma 3.1. Let 𝑍 be a solution of Equation 12 on ℝ+, with (𝑇𝑛)𝑛≥0 its jump times, 𝑇0 = 0. If
Assumption 3.4 is satisfied, then

lim
𝑛→∞

𝑇𝑛 = ∞, ℙ-a.s.

The proof of Lemma 3.1, detailed in Appendix Section 8.2.2 is more technical and relies on a pathwise
comparison result, generalizing those obtained in (Kaakai and El Karoui 2023). An alternative
pathwise representation of the population process, inspired by the randomized Algorithm 3 is given
as well in Proposition 4.3.

4 Population simulation

We now present the main algorithm for simulating the evolution of an IBM over [0, 𝑇]. The algorithm
implemented in IBMPopSim allows the exact simulation of Equation 12, based on an acceptance/reject
algorithm for simulating random times called thinning. The exact simulation of event times with
this acceptance/reject procedure is closely related to the simulations of inhomogeneous Poisson
processes by the so-called thinning algorithm, often attributed to Lewis and Shedler (1979). The
simulation methods for inhomogeneous Poisson processes can be adapted to IBMs, and we introduce
in this section a general algorithm extending those by Fournier and Méléard (2004) (see also Ferrière
and Tran (2009), Bensusan (2010)).

13

It can be noted that under appropriate rescaling and when the population size goes to infinity, an
IBM can be approximated by a non linear transport PDE, structured by age and trait. A central
limit theorem can also be obtained under appropriate assumptions (Tran 2008). In the presence of
interactions as in Section 7 for instance, the IBM goes almost surely to extinction in finite time, which
is not the case for the limit PDE. In this case, simulating the microscopic process can be quite useful
for approximating the distribution of the extinction time. Other applications of IBM simulations can
include the simulation of multiscale population evolution, strongly heterogeneous populations, or
small populations with strong interactions.

The algorithm is based on exponential “candidate” event times, chosen with a (constant) intensity
which must be greater than the global event intensity Λ𝑡(𝑍𝑡) (Equation 4). Starting from time 𝑡, once a
candidate event time 𝑡 + ̄𝑇ℓ has been proposed, a candidate event type 𝑒 (birth, death,...) is chosen with
a probability 𝑝𝑒 depending on the event intensity bounds ̄𝜇𝑒, �̄�𝑒 and �̄� 𝑒, as defined in Assumption 3.2
and Assumption 3.3. An individual 𝐼 is then drawn from the population. Finally, it remains to accept
or reject the candidate event with a probability 𝑞𝑒(𝑡, 𝐼 , 𝑍𝑡) depending on the true event intensity. If
the candidate event time is accepted, then the event 𝑒 occurs at time 𝑡 + ̄𝑇ℓ to the individual 𝐼. The
main idea of the implemented algorithm can be summarized as follows:

1. Draw a candidate time 𝑡 + ̄𝑇ℓ and candidate event type 𝑒.
2. Draw a uniform variable 𝜃 ∼ 𝒰([0, 1]) and individual 𝐼.
3. If 𝜃 ≤ 𝑞𝑒(𝑡, 𝐼 , 𝑍𝑡) then event 𝑒 occur to individual 𝐼, else Do nothing and start again from 𝑡 + ̄𝑇ℓ.

Before introducing the main algorithms in more details, we recall briefly the thinning procedure
for simulating inhomogeneous Poisson processes, as well as the links with pathwise representa-
tions. Some recalls on Poisson random measures are presented in Section 8.1. For a more general
presentation of thinning of a Poisson random measure, see (Devroye 1986; Çinlar 2011; Kallenberg
2017).

4.1 Thinning of Poisson measure

Let us start with the simulation and pathwise representation of an inhomogeneous Poisson process
on [0, 𝑇]with intensity (Λ(𝑡))𝑡∈[0,𝑇]. The thinning procedure is based on the fundamental assumption
that Λ(𝑡) ≤ Λ̄ is bounded on [0, 𝑇]. In this case, the inhomogeneous Poisson can be obtained from an
homogeneous Poisson process of intensity Λ̄, which can be simulated easily.

First, the Poisson process can be extended to a Marked Poisson measure ̄𝑄 ∶= ∑ℓ≥1 𝛿(̄𝑇ℓ,Θ̄ℓ) on (ℝ+)2,
defined as follow:

• The jump times of (̄𝑇ℓ)ℓ≥1 of ̄𝑄 are the jump times of a Poisson process of intensity Λ̄.

• The marks (Θ̄ℓ)ℓ≥1 are i.i.d. random variables, uniformly distributed on [0, Λ̄].

By Proposition 8.3 , ̄𝑄 is a Poisson random measure with mean measure

̄𝜇(d𝑡 , d𝜃) ∶= Λ̄d𝑡
1[0,Λ̄](𝜃)

Λ̄
d𝜃 = d𝑡1[0,Λ̄](𝜃)d𝜃.

In particular, the average number of atoms (̄𝑇ℓ, Θ̄ℓ) in [0, 𝑡] × [0, ℎ] is

𝔼[𝑄([0, 𝑡] × [0, ℎ])] = 𝔼[∑
ℓ
1[0,𝑡]×[0,ℎ](̄𝑇ℓ, Θ̄ℓ)] = ∫

(ℝ+)2
̄𝜇(d𝑡 , d𝜃) = 𝑡(Λ̄ ∧ ℎ).

The thinning is based on the restriction property for Poisson measure: for a measurable set Δ ⊂
ℝ+ × ℝ+, the restriction 𝑄Δ ∶= 1Δ ̄𝑄 of ̄𝑄 to Δ (by taking only atoms in Δ) is also a Poisson random
measure of mean measure 𝜇Δ(d𝑡 , d𝜃) = 1Δ(𝑡, 𝜃) ̄𝜇(d𝑡 , d𝜃).

14

In order to obtain an inhomogeneous Poisson measure of intensity (Λ(𝑡)), the “good” choice of Δ is
the hypograph of Λ: Δ = {(𝑡, 𝜃) ∈ [0, 𝑇] × [0, Λ̄]; 𝜃 ≤ Λ(𝑡)} (see Figure 1). Then,

𝑄Δ = ∑
ℓ≥1

1{Θ̄ℓ≤Λ(̄𝑇ℓ)}𝛿(̄𝑇ℓ,Θ̄ℓ),

and since Λ(𝑡) ≤ Λ̄, on [0, 𝑇]:

𝜇Δ(d𝑡 , d𝜃) = 1{𝜃≤Λ(𝑡)}d𝑡1[0,Λ̄](𝜃)d𝜃 = 1{𝜃≤Λ(𝑡)}d𝑡d𝜃.

Figure 1: Realization of a Marked Poisson measure ̄𝑄 on [0, 𝑇] with mean measure ̄𝜇(d𝑡 , d𝜃) =
d𝑡1[0,Λ̄](𝜃)d𝜃 (red crosses), and realization of the restriction ̄𝑄Δ where Δ = {(𝑡, 𝜃) ∈ [0, 𝑇] × [0, Λ̄], 𝜃 ≤
Λ(𝑡)} (blue circles). The projection of ̄𝑄Δ on first component is an inhomogeneous Poisson process
on [0, 𝑇] of intensity (Λ(𝑡)) and jump times (𝑇𝑘)𝑘≥1.

Finally, the inhomogeneous Poisson process is obtained by the projection Proposition 8.2, which
states that the jump times of 𝑄Δ are the jump times of an inhomogeneous Poisson process of intensity
(Λ(𝑡)).

Proposition 4.1. The counting process 𝑁Λ, projection of 𝑄Δ on the time component and defined by,

𝑁Λ
𝑡 ∶= 𝑄Δ([0, 𝑡] × ℝ+) = ∫

𝑡

0
∫
ℝ+

1{𝜃≤Λ(𝑠)} ̄𝑄(d𝑠, d𝜃) = ∑
ℓ≥1

1{ ̄𝑇ℓ≤𝑡}1{Θ̄ℓ≤Λ(̄𝑇ℓ)}, ∀𝑡 ∈ [0, 𝑇], (13)

is an inhomogeneous Poisson process on [0, 𝑇] of intensity function (Λ(𝑡))𝑡∈[0,𝑇]. The thinning Equation 13
is a pathwise representation of 𝑁Λ by restriction and projection of the Poisson measure 𝑄 on [0, 𝑇].

The previous proposition yields a straightforward thinning algorithm to simulate the jump times
(𝑇𝑘)𝑘≥1 of an inhomogeneous Poisson process of intensity Λ(𝑡), by selecting jump times ̄𝑇ℓ such that
Θ̄ℓ ≤ Λ(̄𝑇ℓ).

4.1.1 Multivariate Poisson process

This can be extended to the simulation of multivariate inhomogeneous Poisson processes, which is
an important example before tackling the simulation of an IBM.

15

Let (𝑁 𝑗)𝑗∈𝒥 be a (inhomogeneous) multivariate Poisson process indexed by a finite set 𝒥, such that
∀𝑗 ∈ 𝒥, the intensity (𝜆𝑗(𝑡))𝑡∈[0,𝑇] of 𝑁𝑗 is bounded on [0, 𝑇]:

sup
𝑡∈[0,𝑇]

𝜆𝑗(𝑡) ≤ �̄�𝑗, and let Λ̄ = ∑
𝑗∈𝒥

�̄�𝑗.

Recall that such multivariate counting process can be rewritten as a Poisson random measure
𝑁 = ∑𝑘≥1 𝛿(𝑇𝑘,𝐽𝑘) on ℝ+ × 𝒥 (see e.g. Sec. 2 of Chapter 6 in (Çinlar 2011)), where 𝑇𝑘 is 𝑘th jump
time of ∑𝑗∈𝒥 𝑁 𝑗 and 𝐽𝑘 corresponds to the component of the the vector which jumps. In particular,
𝑁 𝑗
𝑡 = 𝑁([0, 𝑡] × {𝑗}).

Once again the simulation of such process can be obtained from the simulation of a (homogeneous)
multivariate Poisson process of intensity vector (�̄�𝑗)𝑗∈𝒥, extended into a Poisson measures by adding
marks on ℝ+. Thus, we introduce the Marked Poisson measure ̄𝑄 = ∑ 𝛿(̄𝑇ℓ, ̄𝐽ℓ,Θ̄ℓ) on ℝ+ × 𝒥 × ℝ+, such
that:

• The jump times (̄𝑇ℓ) of ̄𝑄 are the jump times of a Poisson measure of intensity Λ̄.
• The variables (̄𝐽ℓ) are i.i.d. random variables on 𝒥, with 𝑝𝑗 = ℙ(̄𝐽1 = 𝑗) = �̄�𝑗/Λ̄ and representing
the component of the vector which jumps.

• The marks (Θ̄ℓ) are independent variables with Θ̄ℓ a uniform random variable on [0, �̄� ̄𝐽ℓ], ∀ℓ ≥ 1.

By Proposition 8.3 and Proposition 8.2, each measure ̄𝑄𝑗(d𝑡 , d𝜃) = ̄𝑄(d𝑡 , {𝑗}, d𝜃) = ∑ℓ≥1 1{ ̄𝐽ℓ=𝑗}𝛿(̄𝑇ℓ,Θ̄ℓ)
is a marked Poisson measure of intensity

̄𝜇𝑗(d𝑡 , d𝜃) = Λ̄𝑝𝑗d𝑡
1{𝜃≤�̄�𝑗}(𝜃)

�̄�𝑗
d𝜃 = d𝑡1{𝜃≤�̄�𝑗}(𝜃)d𝜃.

As a direct application of Proposition 4.1 , the inhomogeneous multivariate Poisson process is
obtained by restriction of each measures ̄𝑄𝑗 to Δ𝑗 = {(𝑡, 𝜃) ∈ [0, 𝑇] × [0, �̄�𝑗]; 𝜃 ≤ 𝜆𝑗(𝑡)} and projection.

Proposition 4.2. The multivariate counting process (𝑁 𝑗)𝑗∈𝒥, defined for all 𝑗 ∈ 𝒥 and 𝑡 ∈ [0, 𝑇] by
thinning and projection of ̄𝑄:

𝑁 𝑗
𝑡 ∶= ∫

𝑡

0
∫
ℝ+

1{𝜃≤𝜆𝑗(𝑠)} ̄𝑄(d𝑠, {𝑗}, d𝜃) = ∑
ℓ≥1

1{ ̄𝑇ℓ≤𝑡}1{ ̄𝐽ℓ=𝑗}1{Θ̄ℓ≤𝜆𝑗(̄𝑇ℓ)},

is an inhomogeneous Poisson process of intensity vector (𝜆𝑗(𝑡))𝑗∈𝒥 on [0, 𝑇].

Proposition 4.2 yields the following simulation Algorithm 1 for multivariate Poisson processes.

Remark 4.1. The acceptance/rejection Algorithm 1 can be efficient when the functions 𝜆𝑗 are of
different order, and thus bounded by different �̄�𝑗. However, it is important to note that the simulation
of the discrete random variables (̄𝐽ℓ) can be costly (compared to a uniform law) when 𝒥 is large,
for instance when an individual is drawn from a large population. In this case, an alternative is to
choose the same bound �̄�𝑗 = �̄� for all 𝑗 ∈ 𝒥. Then the marks (̄𝐽ℓ, Θ̄ℓ) are i.i.d. uniform variables on
𝒥 × [0, �̄�], faster to simulate.

4.2 Simulation algorithm

Let us now come back to the simulation of the IBM introduced in Section 2. For ease of notations, we
assume that there are no event with Poisson intensity (𝒫 = ∅), so that all events that occur are of type
𝑒 ∈ ℰ ∪ ℰ𝑊, with individual intensity 𝜆𝑒𝑡 (𝐼 , 𝑍𝑡) depending on the population composition 𝑍𝑡 (𝑒 ∈ ℰ𝑊)
or not (𝑒 ∈ ℰ), as defined in Equation 7 and verifying either Assumption 3.2 or Assumption 3.3. The

16

Algorithm 1 Thinning algorithm for multivariate inhomogeneous Poisson processes.

1: Input: Functions and bounds (𝜆𝑗, �̄�𝑗), 𝜆𝑗 ∶ [0, 𝑇] → [0, �̄�𝑗] and Λ̄ = ∑𝑗∈𝒥 �̄�𝑗
2: Output: Points (𝑇𝑘, 𝐽𝑘) of Poisson measure 𝑁 on [0, 𝑇] × 𝒥
3: Initialization 𝑇0 ⟵ 0, ̄𝑇0 ⟵ 0
4: while 𝑇𝑘 < 𝑇 do
5: repeat
6: increment iterative variable ℓ ⟵ ℓ + 1
7: compute next proposed time ̄𝑇ℓ ⟵ ̄𝑇ℓ−1 + 𝑆ℓ with 𝑆ℓ ∼ ℰ(Λ̄)
8: draw ̄𝐽ℓ ∼ 𝒰{�̄�𝑗/Λ̄, 𝑗 ∈ 𝒥} i.e. ℙ(̄𝐽ℓ = 𝑗) = �̄�𝑗/Λ̄
9: draw Θ̄ℓ ∼ 𝒰([0, �̄� ̄𝐽ℓ])

10: until accepted event Θ̄ℓ ≤ 𝜆 ̄𝐽ℓ(
̄𝑇ℓ)

11: record (𝑇𝑘, 𝐽𝑘) ⟵ (̄𝑇ℓ, ̄𝐽ℓ) as accepted point
12: end while

global intensity Equation 9 at time 𝑡 ∈ [0, 𝑇] is thus

Λ𝑡(𝑍𝑡) = ∑
𝑒∈ℰ

(
𝑁𝑡

∑
𝑘=1

𝜆𝑒(𝑡, 𝐼𝑘)) + ∑
𝑒∈ℰ𝑊

(
𝑁𝑡

∑
𝑘=1

𝑁𝑡

∑
𝑗=1

𝑊 𝑒(𝑡, 𝐼𝑘, 𝐼𝑗)) ≤ Λ̄(𝑁𝑡), (14)

with Λ̄(𝑛) = (∑𝑒∈ℰ �̄�𝑒)𝑛 + (∑𝑒∈ℰ𝑊
�̄� 𝑒)𝑛2.

One of the main difficulty is that the intensity of events is not deterministic as in the case of
inhomogeneous Poisson processes, but a function Λ𝑡(𝑍𝑡) of the population state, bounded by a
function which also depends on the population size. However, the Algorithm 1 can be adapted
to simulate the IBM. The construction is done by induction, by conditioning on the state of the
population 𝑍𝑇𝑘 at the 𝑘th event time 𝑇𝑘 (𝑇0 = 0).

We first present the construction of the first event at time 𝑇1.

First event simulation

Before the first event time, on {𝑡 < 𝑇1}, the population composition is constant : 𝑍𝑡 = 𝑍0 = {𝐼1, … , 𝐼𝑁0}.
For each type of event 𝑒 and individual 𝐼𝑘, 𝑘 ∈ {1, …𝑁0}, we denote by 𝑁 𝑘,𝑒 the counting process of
intensity 𝜆𝑒𝑡 (𝐼𝑘, 𝑍𝑡), counting the occurrences of the events of type 𝑒 happening to the individual 𝐼𝑘.
Then, the first event 𝑇1 is the first jump time of the multivariate counting vector (𝑁 (𝑘,𝑒))(𝑘,𝑒)∈𝒥0

, with
𝒥0 = {1, … , 𝑁0} × (ℰ ∪ ℰ𝑊).

Since the population composition is constant before the first event time, each counting process
𝑁 𝑗 with 𝑗 = (𝑘, 𝑒) ∈ 𝒥0 coincides on [0, 𝑇1[with an inhomogeneous Poisson process, of intensity
𝜆𝑒𝑡 (𝐼𝑘, 𝑍0). Thus (conditionally to 𝑍0), 𝑇1 is also the first jump time of an inhomogeneous multivariate
Poisson process 𝑁 0 = (𝑁 0,𝑗)𝑗∈𝒥0 of intensity function (𝜆𝑗)𝑗∈𝒥0 , defined for all 𝑗 = (𝑘, 𝑒) ∈ 𝒥0 by:

𝜆𝑗(𝑡) = 𝜆𝑒𝑡 (𝐼𝑘, 𝑍0) ≤ �̄�𝑒0 with �̄�𝑒0 = �̄�𝑒1𝑒∈ℰ + �̄� 𝑒𝑁01𝑒∈ℰ𝑊 ,

by Assumption 3.2 and Assumption 3.3. In particular, the jump times of 𝑁 0 occur at the intensity

Λ(𝑡) = ∑
𝑗∈𝒥0

𝜆𝑗(𝑡) = ∑
𝑒∈ℰ∪ℰ𝑊

𝑁0

∑
𝑘=1

𝜆𝑒𝑡 (𝐼𝑘, 𝑍0) ≤ Λ̄(𝑁0) = 𝑁0 ∑
𝑒∈ℰ∪ℰ𝑊

�̄�𝑒0.

By Proposition 4.2, 𝑁 0 can be obtained by thinning of the marked Poisson measure
̄𝑄0 = ∑ℓ≥1 𝛿(̄𝑇ℓ,(̄𝐾ℓ, ̄𝐸ℓ),Θ̄ℓ) on ℝ+ × 𝒥0 × ℝ+, with:

17

• (̄𝑇ℓ)ℓ∈ℕ∗ the jump times of a Poisson process of rate Λ̄(𝑁0).
• (̄𝐾ℓ, ̄𝐸ℓ)ℓ∈ℕ∗ discrete i.i.d. random variables on𝒥0 = {1, … , 𝑁0}×(ℰ ∪ℰ𝑊), with 𝐾ℓ representing
the index of the chosen individual and 𝐸ℓ the event type for the proposed event, such that:

ℙ(̄𝐾1 = 𝑘, ̄𝐸1 = 𝑒) =
�̄�𝑒0

Λ̄(𝑁0)
= 1

𝑁0

�̄�𝑒0𝑁0

Λ̄(𝑁0)
,

i.e. (̄𝐾1, ̄𝐸1) are distributed as independent random variables where ̄𝐾1 ∼ 𝒰({1, … , 𝑁0}) and ̄𝐸1
such that

𝑝𝑒 ∶= ℙ(̄𝐸1 = 𝑒) =
�̄�𝑒0𝑁0

Λ̄(𝑁0)
.

• (Θ̄ℓ)ℓ∈ℕ∗ are independent uniform random variables, with Θ̄ℓ ∼ 𝒰([0, �̄� ̄𝐸ℓ]).

Since the first event is the first jump of 𝑁 0, by Proposition 4.2 and Algorithm 1 , the first event time
𝑇1 is the first jump time ̄𝑇ℓ of ̄𝑄0 such that Θ̄ℓ ≤ 𝜆

̄𝐸ℓ
̄𝑇ℓ
(𝐼 ̄𝐾ℓ

, 𝑍0).

At 𝑇1 = ̄𝑇ℓ, the event ̄𝐸ℓ occurs to the individual 𝐼 ̄𝐾ℓ
= (𝜏 𝑏, ∞, 𝑥). For instance, if ̄𝐸ℓ = 𝑑, a death/exit

event occurs, so that 𝑍𝑇1 = 𝑍0 + 𝛿(𝜏 𝑏,𝑇1,𝑥) − 𝛿𝐼 ̄𝐾ℓ
and 𝑁𝑇1 = 𝑁0. If ̄𝐸ℓ = 𝑏 or 𝑒𝑛, a birth or entry event

occurs, so that 𝑁𝑇1 = 𝑁0 + 1, and a new individual 𝐼𝑁0+1 is added to the population, chosen as
described in Table 1. Finally, if ̄𝐸ℓ = 𝑠, a swap event occurs, the population size stays constant and 𝐼 ̄𝐾ℓ
is replaced by an individual 𝐼 ′ ̄𝐾ℓ

, chosen as described in Table 1.

The steps for simulating the first event in the population can be iterated in order to simulate the
population. At the 𝑘th step, the same procedure is repeated to simulate the 𝑘th event, starting from a
population 𝑍𝑇𝑘−1 of size 𝑁𝑇𝑘−1 . The algorithm is summarized in Algorithm 2 .

Algorithm 2 IBM simulation algorithm (without events of Poissonian intensity)
1: Input: Initial population 𝑍0, horizon 𝑇 > 0, and events described by:
2: - Intensity functions and bounds (𝜆𝑒, �̄�𝑒) for 𝑒 ∈ ℰ and (𝑊 𝑒, �̄� 𝑒) for 𝑒 ∈ ℰ𝑊
3: - Event action functions 𝜙𝑒(𝑡, 𝐼) for 𝑒 ∈ ℰ ∪ ℰ𝑊
4: Output: Population 𝑍𝑇
5: Initialization 𝑇0 ⟵ 0, ̄𝑇0 ⟵ 0
6: while 𝑇𝑘 < 𝑇 do
7: repeat
8: increment iterative variable ℓ ⟵ ℓ + 1
9: compute next proposed time ̄𝑇ℓ ⟵ ̄𝑇ℓ−1 + ℰ(Λ̄(𝑁𝑇𝑘))

10: draw a proposed event ̄𝐸ℓ ∼ 𝒰{𝑝𝑒} with 𝑝𝑒 =
�̄�𝑒1𝑒∈ℰ+�̄� 𝑒𝑁𝑇𝑘1𝑒∈ℰ𝑊
∑𝑒∈ℰ �̄�𝑒+∑𝑒∈ℰ𝑊 �̄� 𝑒𝑁𝑇𝑘

11: draw an individual index ̄𝐾ℓ ∼ 𝒰({1, … , 𝑁𝑇𝑘})
12: draw Θ̄ℓ ∼ 𝒰([0, �̄� ̄𝐸ℓ]) if ̄𝐸ℓ ∈ ℰ or Θ̄ℓ ∼ 𝒰([0, �̄� ̄𝐸ℓ𝑁𝑇𝑘]) if ̄𝐸ℓ ∈ ℰ𝑊

13: until accepted event Θ̄ℓ ≤ 𝜆
̄𝐸ℓ
̄𝑇ℓ
(𝐼 ̄𝐾ℓ

, 𝑍𝑇𝑘)
14: increment iterative variable 𝑘 ⟵ 𝑘 + 1
15: record (𝑇𝑘, 𝐸𝑘, 𝐼𝑘) ⟵ (̄𝑇ℓ, ̄𝐸ℓ, 𝐼 ̄𝐾ℓ

) as accepted time, event and individual
16: update the population 𝑍𝑇𝑘 = 𝑍𝑇𝑘−1 + 𝜙𝐸𝑘(𝑇𝑘, 𝐼𝑘)
17: end while

Theorem 4.1. A population process (𝑍𝑡)𝑡∈[0,𝑇] simulated by the Algorithm 2 is an exact solution of the
SDE Equation 12.

The proof of Theorem 4.1 is detailed in the Appendix Section 8.3.

18

Remark 4.2. The population 𝑍𝑇𝑘 includes dead/exited individuals before the event time 𝑇𝑘. Thus,
𝑁𝑇𝑘 > 𝑁 𝑎

𝑇𝑘 is greater than the number of alive individuals at time 𝑇𝑘. When a dead individual 𝐼 ̄𝐾𝑙
is

drawn from the population during the rejection/acceptance phase of the algorithm, the proposed
event (̄𝑇ℓ, ̄𝐸ℓ, 𝐼 ̄𝐾ℓ

) is automatically rejected since the event intensity is 𝜆
̄𝐸ℓ

𝑇ℓ (𝐼 ̄𝐾ℓ
, 𝑍𝑇𝑘) = 0 (nothing can

happen to a dead individual). This can slow down the algorithm, especially when the proportion of
dead/exited individuals in the population increases. However, the computational cost of keeping
dead/exited individuals in the population is much lower than the cost of removing an individual
from the population at each death/exit event, which is linear in the population size.

Actually, dead/exited individuals are regularly removed from the population in the IBMPopSim
algorithm, in order to optimize the trade-off between having to many dead individuals and removing
dead individuals from the population too often. The frequency at which dead individuals are “removed
from the population” can be chosen by the user, as an optional argument of the main function popsim
(see details in Section 4).

Remark 4.3. In practice, the bounds �̄�𝑒 and �̄� 𝑒 should be chosen as sharp as possible. It is easy to
see that conditionally to { ̄𝐸ℓ = 𝑒, ̄𝑇ℓ = 𝑡, ̄𝐾ℓ = 𝑙} the probability of accepting the event is, depending if
there are interactions,

ℙ(Θ̄ℓ ≤ 𝜆𝑒𝑡 (𝐼𝑙, 𝑍𝑇𝑘)|ℱ𝑇𝑘) =
𝜆𝑒(𝑡, 𝐼𝑙)
�̄�𝑒

1𝑒∈ℰ +
∑

𝑁𝑇𝑘
𝑗=1𝑊 𝑒(𝑡, 𝐼𝑙, 𝐼𝑗)

�̄� 𝑒𝑁𝑇𝑘
1𝑒∈ℰ𝑊 .

The sharper the bounds �̄�𝑒 and �̄� 𝑒 are, the higher is the acceptance rate. For even sharper bounds,
an alternative is to define bounds �̄�𝑒(𝐼𝑙) and �̄� 𝑒(𝐼𝑙) depending on the individuals’ characteristics.
However, the algorithm is modified and the individual 𝐼𝑙 is not chosen uniformly in the population
anymore. Due to the population size, this is way more costly than choosing uniform bounds, as
explained in Remark 4.1.

4.3 Simulation algorithm with randomization

Let 𝑒 ∈ 𝐸𝑊 be an event with interactions. In order to evaluate the individual intensity 𝜆𝑒𝑡 (𝐼 , 𝑍𝑡) =
∑𝑁𝑡

𝑗=1𝑊 𝑒(𝑡, 𝐼 , 𝐼𝑗) one must compute 𝑊 𝑒(𝑡, 𝐼𝑙, 𝐼𝑗) for all individuals in the population. This step can be
computationally costly, especially for large populations. One way to avoid this summation is to use
randomization (see also Fournier and Méléard (2004) in a model without age). The randomization
consists in replacing the summation by an evaluation of the interaction function 𝑊 𝑒 using an
individual 𝐽 drawn uniformly from the population.

More precisely, if 𝐽 ∼ 𝒰({1, … , 𝑁𝑇𝑘}) is independent of Θ̄ℓ, we have

ℙ(Θ̄ℓ ≤
𝑁𝑇𝑘

∑
𝑗=1

𝑊 𝑒(𝑡, 𝐼𝑙, 𝐼𝑗)|ℱ𝑇𝑘) = ℙ(Θ̄ℓ ≤ 𝑁𝑇𝑘𝑊
𝑒(𝑡, 𝐼𝑙, 𝐼𝐽)|ℱ𝑇𝑘). (15)

Equivalently, we can write this probability as ℙ(Θ̃ℓ ≤ 𝑊 𝑒(𝑡, 𝐼𝑙, 𝐼𝐽)) where Θ̃ℓ =
Θ̄ℓ
𝑁𝑇𝑘

∼ 𝒰([0, �̄� 𝑒]) is

independent of 𝐽 ∼ 𝒰({1, … , 𝑁𝑇𝑘}).

The efficiency of the randomization procedure increases with the population homogeneity. If the
function 𝑊 𝑒 varies little according to the individuals in the population, the randomization approach
is very efficient in practice, especially when the population is large.

We now present the main Algorithm 3 implemented in the popsim function of the IBMPopSim pack-
age in the case where events arrive with individual intensities, but also with interactions (using
randomization) and Poisson intensities. In this general case, Λ̄(𝑛) is defined by Equation 11.

19

Algorithm 3 Randomized IBM simulation algorithm
1: Input: Initial population 𝑍0, horizon 𝑇 > 0, and events described by
2: Intensity functions and bounds (𝜆𝑒, �̄�𝑒) for 𝑒 ∈ ℰ, (𝑊 𝑒, �̄� 𝑒) for 𝑒 ∈ ℰ𝑊 and (𝜇𝑒, ̄𝜇𝑒) for 𝑒 ∈ 𝒫
3: Event action functions 𝜙𝑒(𝑡, 𝐼) for 𝑒 ∈ ℰ ∪ ℰ𝑊 ∪ 𝒫
4: Output: Population 𝑍𝑇
5: Initialization 𝑇0 ⟵ 0, ̄𝑇0 ⟵ 0
6: while 𝑇𝑘 < 𝑇 do
7: repeat
8: increment iterative variable ℓ ⟵ ℓ + 1
9: compute next proposed time ̄𝑇ℓ ⟵ ̄𝑇ℓ−1 + ℰ(Λ̄(𝑁𝑇𝑘))

10: draw an individual index ̄𝐾ℓ ∼ 𝒰({1, … , 𝑁𝑇𝑘})

11: draw a proposed event ̄𝐸ℓ ∼ 𝒰{𝑝𝑒} with 𝑝𝑒 =
̄𝜇𝑒1𝑒∈𝒫+�̄�𝑒𝑁𝑇𝑘1𝑒∈ℰ+�̄�

𝑒(𝑁𝑇𝑘)
21𝑒∈ℰ𝑊

Λ̄(𝑁𝑇𝑘)
12: if ̄𝐸ℓ ∈ ℰ (without interaction) then
13: draw Θ̄ℓ ∼ 𝒰([0, �̄� ̄𝐸ℓ])
14: accepted ⟵ Θ̄ℓ ≤ 𝜆 ̄𝐸ℓ(̄𝑇ℓ, 𝐼 ̄𝐾ℓ

)
15: end if
16: if ̄𝐸ℓ ∈ ℰ𝑊 (with interaction) then
17: draw (Θ̄ℓ, 𝐽ℓ) ∼ 𝒰([0, �̄� ̄𝐸ℓ] × {1, … , 𝑁𝑇𝑘})
18: accepted ⟵ Θ̄ℓ ≤ 𝑊 ̄𝐸ℓ(̄𝑇ℓ, 𝐼 ̄𝐾ℓ

, 𝐼𝐽ℓ)
19: end if
20: if ̄𝐸ℓ ∈ 𝒫 (Poissonian intensity) then
21: draw Θ̄ℓ ∼ 𝒰([0, ̄𝜇 ̄𝐸ℓ])
22: accepted ⟵ Θ̄ℓ ≤ 𝜇 ̄𝐸ℓ(̄𝑇ℓ)
23: end if
24: until accepted
25: increment iterative variable 𝑘 ⟵ 𝑘 + 1
26: record (𝑇𝑘, 𝐸𝑘, 𝐼𝑘) ⟵ (̄𝑇ℓ, ̄𝐸ℓ, ̄𝐼 ̄𝐾ℓ

) as accepted time, event and individual
27: update the population 𝑍𝑇𝑘 = 𝑍𝑇𝑘−1 + 𝜙𝐸𝑘(𝑇𝑘, 𝐼𝑘)
28: end while

Proposition 4.3. The population processes (𝑍𝑡)𝑡∈[0,𝑇] simulated by the Algorithm 2 and Algorithm 3
have the same law.

Proof. The only difference between Algorithm 2 and Algorithm 3 is in the acceptance/rejection step
of proposed events, in the presence of interactions. In Algorithm 3 , a proposed event (̄𝑇ℓ, ̄𝐸ℓ, ̄𝐾ℓ),
with ̄𝐸𝑙 ∈ ℰ𝑊 (an event with interaction), is accepted as a true event in the population if

Θ̄ℓ ≤ 𝑊 ̄𝐸ℓ(̄𝑇ℓ, 𝐼 ̄𝐾ℓ
, 𝐼 ̄𝐽ℓ), with (Θ̄ℓ, ̄𝐽ℓ) ∼ 𝒰([0, �̄� ̄𝐸ℓ] × {1, … , 𝑁𝑇𝑘}).

By Equation 15, the probability of accepting this event is the same than in Algorithm 2 , which
achieves the proof.

5 Model creation and simulation with IBMPopSim

The use of the IBMPopSim package is mainly done in two steps: a first model creation followed by
the simulation of the population evolution. The creation of a model is itself based on two steps: the
description of the population 𝑍𝑡, as introduced in Section 3.1, and the description of the events types,
along with their associated intensities, as detailed in Section 3.2 and Section 3.3. A model is compiled

20

by calling the mk_model function, which internally uses a template mechanism to automatically
generate the source code describing the model, which is subsequently compiled using the Rcpp
package to produce the object code.

After the compilation of the model, the simulations are launched by calling the popsim function.
This function depends on the previously compiled model and simulates a random trajectory of the
population evolution based on an initial population and on parameter values, which can change from
a call to another.

In this section, we take a closer look at each component of a model in IBMPopSim. We also refer to
the IBMPopSim website and to the vignettes of the package for more details on the package and
various examples of model creation.

5.1 Population

A population 𝑍 is represented by an object of class population containing a data frame where each
row corresponds to an individual 𝐼 = (𝜏 𝑏, 𝜏 𝑑, 𝑥), and which has at least two columns, birth and death,
corresponding to the birth date 𝜏 𝑏 and death/exit date 𝜏 𝑑 (𝜏 𝑑 is set to NA for alive individuals). The data
frame can contain more than two columns if individuals are described by additional characteristics
𝑥 = (𝑥1, … 𝑥𝑛).

If entry events can occur in the population, the population will contain a characteristic named
entry. This can be done by setting the flag entry=TRUE in the population function, or by calling the
add_characteristic function on an existing population. During the simulation, the date at which
an individual enters the population is automatically recorded in the variable I.entry. If exit events
can occur, the population shall contain a characteristic named out. This can be done by setting the
flag out=TRUE in the population function, or by calling the add_characteristic function. When
an individual I exits the population during the simulation, I.out is set to TRUE and its exit time is
recorded as a “death” date.

In the example below, individuals are described by their birth and death dates, as well a Boolean
characteristics called male, and the entry characteristic. For instance, the first individual is a female
whose age at 𝑡0 = 0 is 107 and who was originally in the population.

pop_init <- population(EW_pop_14$sample, entry=TRUE)
str(pop_init)

Classes 'population' and 'data.frame': 100000 obs. of 4 variables:
$ birth: num -107 -107 -105 -104 -104 ...
$ death: num NA NA NA NA NA NA NA NA NA NA ...
$ male : logi FALSE FALSE TRUE FALSE FALSE FALSE ...
$ entry: logi NA NA NA NA NA NA ...

Individual In the C++model which is automatically generated and compiled, an individual I is an object
of an internal class containing some attributes (birth_date, death_date and the characteristics),
and some methods including:

• I.age(t): a const method returning the age of an individual I at time t,
• I.set_age(a, t): a method to set the age a at time t of an individual I (set birth_date at
t-a),

• I.is_dead(t): a const method returning true if the individual I is dead at time t.

Remark 5.1. A characteristic 𝑥𝑖 must be of atomic type: logical, integer, double or character.
The function get_characteristic allows to easily get characteristics names and their types from a

21

https://daphnegiorgi.github.io/IBMPopSim/

Table 2: Choices of CLASS and TYPE arguments for an event creation.

(a) Intensity Classes

Intensity class Set CLASS

Individual ℰ individual
Interaction ℰ𝑊 interaction
Poisson 𝒫 poisson
Inhomogeneous Poisson 𝒫 inhomogeneous_poisson

(b) Event Types

Event type TYPE

Birth birth
Death death
Entry entry
Exit exit
Swap swap

population data frame. We draw the attention to the fact that some names for characteristics are
forbidden, or reserved to specific cases : this is the case for birth, death, entry, out, id.

5.2 Events

The most important step of the model creation is the events creation. The call to the function creating
an event is of form

mk_event_CLASS(type="TYPE", name="NAME", ...)

where CLASS is replaced by the class of the event intensity, described in Section 3.3 , and type
corresponds to the event type, described in Section 3.2. Table 2a and Table 2b summarize the different
possible choices for intensity classes and types of event. The optional argument name gives a name
to the event. If not specified, the name of the event is its type, for instance death. However, a name
must be specified if the model is composed of several events with the same type (for instance when
there are multiple death events corresponding to different causes of death). The other arguments
depend on the intensity class and on the event type.

The intensity function and the kernel of an event are defined through arguments of the function
mk_event_CLASS. These arguments are strings composed of few lines of code. Since the model is
compiled using Rcpp, the code should be written in C++. However, thanks to the functions/variables
of the package, even the non-experienced C++ user can define a model quite easily. To facilitate the
implementation, the user can also define a list of model parameters, which can be used in the
event and intensity definitions. These parameters are stored in a named list and can be of various
types: atomic type, numeric vector or matrix, predefined function of one variable (stepfun, linfun,
gompertz, weibull, piecewise_x), piecewise functions of two variables (piecewise_xy). We refer
to the vignette(IBMPopSim_cpp) for more details on parameters types and basic C++ tools. Another
advantage of the model parameters is that their value can be modified from a simulation to another
without changing the model.

5.2.1 Intensities

In IBMPopSim, the intensity of an event can belong to three classes Section 3.3: individual intensities
without interaction between individuals, corresponding to events 𝑒 ∈ ℰ, individual intensities
with interaction, corresponding to events 𝑒 ∈ ℰ𝑊, and Poisson intensities (homogeneous and
inhomogeneous), corresponding to events 𝑒 ∈ 𝒫.

Event creation with individual intensity

An event 𝑒 ∈ ℰ (see Equation 5) has an intensity of the form 𝜆𝑒(𝑡, 𝐼) which depends only on the
individual I and time. Events with such intensity are created using the function

22

mk_event_individual(type = "TYPE",
name = "NAME",
intensity_code = "INTENSITY", ...)

The intensity_code argument is a character string containing few lines of C++ code describing the
intensity function 𝜆𝑒(𝑡, 𝐼). The intensity value has to be stored in a variable called result and the
available variables for the intensity code are given in Table 3.

Table 3: C++ variables available for intensity code

Variable Description

Variable Description
I Current individual
J Another individual in the population (only for interaction)
t Current time
Model parameters Depends on the model

For instance, the intensity code below corresponds to an individual death intensity 𝜆𝑑(𝑡, 𝐼) equal to
𝑑1(𝑎(𝐼 , 𝑡)) = 𝛼1 exp(𝛽1𝑎(𝐼 , 𝑡)) for males and 𝑑2(𝑎(𝐼 , 𝑡)) = 𝛼2 exp(𝛽2𝑎(𝐼 , 𝑡)) for females, where 𝑎(𝐼 , 𝑡) =
𝑡 − 𝜏 𝑏 is the age of the individual 𝐼 = (𝜏 𝑏, 𝜏 𝑑, 𝑥) at time 𝑡. In this case, the intensity function depends
on the individuals’ age, gender, and on the model parameters 𝛼 = (𝛼1, 𝛼2) and 𝛽 = (𝛽1, 𝛽2).

death_intensity <- "
if (I.male) result = alpha_1 * exp(beta_1 * I.age(t));
else result = alpha_2 * exp(beta_2 * I.age(t));

"

Event creation with interaction intensity

An event 𝑒 ∈ ℰ𝑊 is an event which occurs to an individual at a frequency which is the result of
interactions with other members of the population (see Equation 6), and which can be written as
𝜆𝑒𝑡 (𝐼 , 𝑍𝑡) = ∑𝐽∈𝑍𝑡 𝑊

𝑒(𝑡, 𝐼 , 𝐽) where 𝑊 𝑒(𝑡, 𝐼 , 𝐽) is the intensity of the interaction between individual 𝐼
and individual 𝐽.

An event 𝑒 ∈ ℰ𝑊 with such intensity is created by calling the function

mk_event_interaction(type = "TYPE",
name = "NAME",
interaction_code = "INTERACTION_CODE",
interaction_type = "random", ...)

The interaction_code argument contains few lines of C++ code describing the interaction function
𝑊 𝑒(𝑡, 𝐼 , 𝐽). The interaction function value has to be stored in a variable called result and the available
variables for the intensity code are given in Table 3. For example, if we set

death_interaction_code <- "result = max(J.size - I.size, 0.);"

the death intensity of an individual I is the result of the competition between individuals, depending
on a characteristic named size, as defined in Equation 8.

The argument interaction_type, set by default at random, is the algorithm choice for sim-
ulating the model. When interaction_type=full, the simulation follows Algorithm 2 ,
interaction_type=random it follows Algorithm 3 . In most cases, the random algorithm is much
faster than the full algorithm. For instance in the example of Section 7 the random algorithm is 40

23

times faster on average than the full algorithm, on a set of standard parameters. This allows in
particular to explore larger parameter sets and population sizes, while avoiding the explosion of
computation time.

Events creation with Poisson and Inhomogeneous Poisson intensity

For events 𝑒 ∈ 𝒫 with an intensity 𝜇𝑒(𝑡)which does not depend on the population, the event intensity
is of class inhomogeneous_poisson or poisson depending on whether or not the intensity depends
on time (in the second case the intensity is constant).

For Poisson (constant) intensities the events are created with the function

mk_event_poisson(type = "TYPE",
name = "NAME",
intensity = "CONSTANT", ...)

The following example creates a death event, where individuals die at a constant intensity lambda
(which has to be in the list of model parameters):

mk_event_poisson(type = "death,
intensity = "lambda")

When the intensity (𝜇𝑒(𝑡)) depends on time, the event can be created similarly by using the function

mk_event_inhomogeneous_poisson(type = "TYPE",
name = "NAME",
intensity = "INTENSITY", ...)

5.2.2 Event kernel code

When an event occurs, the events kernels 𝑘𝑒 specify how the event modifies the population. The
events kernels are defined in the kernel_code parameter of the mk_event_CLASS(type = "TYPE",
name ="NAME", ...) function. The kernel_code is NULL by default and doesn’t have to be specified
for death, exit events and birth events, but mandatory for entry and swap events. Recall that the
kernel_code argument is a string composed of a few lines of C++ code, characterizing the individual
characteristics following the event. Table 4 summarizes the list of available variables that can be
used in the kernel_code.

• Death/Exit event If the user defines a death event, the death date of the current individual I
is set automatically to the current time t. Similarly, when an individual I exits the population,
I.out is set automatically to TRUE and his exit time is recorded as a death date. For these events
types, the kernel_code doesn’t have to be specified by the user.

• Birth event The default generated event kernel is that an individual I gives birth to a new
individual newI of age 0 at the current time t, with same characteristics than the parent I. If
no kernel is specified, the default generated C++ code for a birth event is:

individual newI = I;
newI.birth_date = t;
pop.add(newI);

The user can modify the birth kernel, by specifying the argument kernel_code of mk_event_CLASS.
In this case, the generated code is

individual newI = I;
newI.birth_date = t;

24

_KERNEL_CODE_
pop.add(newI);

where _KERNEL_CODE_ is replaced by the content of the kernel_code argument.

• Entry event When an individual I enters the population, I.entry is set automatically as
the date at which the individual enters the population. When an entry occurs the individual
entering the population is not of age 0. In this case, the user must specify the kernel_code
argument indicating how the age and characteristics of the new individual are chosen. For
instance, the code below creates an event of type entry, named ev_example, where individuals
enter the population at a Poisson constant intensity. When an individual newI enters the
population at time t, its age is chosen as a normally distributed random variable, with mean
20 and variance 4.

mk_event_poisson(
type = "entry",
name = "ev_example",
intensity = "lambda",
kernel_code = "

double a_I = max(CNorm(20, 2), 0.);
newI.set_age(a_I, t);

")

• Swap event The user must specify the kernel_code argument indicating how the characteris-
tics of an individual are modified following a swap.

Table 4: C++ variables available for events kernel code

Variable Description

Variable Description
I Current individual
J Another individual in the population (only for interaction)
t Current time
pop Current population (vector)
newI Available only for birth and entry events.
Model parameters Depends on the model

When there are several events of the same type, the user can identify which events generated a
particular event by adding a characteristic to the population recording the event name/id when it
occurs. See e.g. vignette(IBMPopSim_human_pop) for an example with different causes of death.

5.3 Model creation

Once the population, the events, and model parameters are defined, the IBM model is created using
the function mk_model.

model <- mk_model(characteristics = get_characteristics(pop_init),
event = events_list,
parameters = model_params)

During this step which can take a few seconds, the model is created and compiled using the Rcpp
package. The model structure in IBMPopSim is that the model depends only on the population

25

characteristics’ and parameters names and types, rather than their values. This means that once
the model has been created, various simulations can be done with different initial populations and
different parameters values.

Example 5.1. Here is an example of model with a population structured by age and gender, with
birth and death events. The death intensity of an individual of age 𝑎 is 𝑑(𝑎) = 𝛼 exp(𝛽𝑎), and females
between 15 and 40 can give birth with birth intensity 𝑏(𝑎) = �̄�𝑏1[15,40]. The newborn is a male with
probability 𝑝𝑚𝑎𝑙𝑒.

params <- list("p_male"= 0.51,
"birth_rate" = stepfun(c(15,40),c(0,0.05,0)),
"death_rate" = gompertz(0.008,0.02))

death_event <- mk_event_individual(type = "death", name= "my_death_event",
intensity_code = "result = death_rate(age(I,t));")

birth_event <- mk_event_individual(type = "birth",
intensity_code = "if (I.male)

result = 0;
else

result=birth_rate(age(I,t));",
kernel_code = "newI.male = CUnif(0, 1) < p_male;")

pop <- population(EW_pop_14$sample)

model <- mk_model(characteristics = get_characteristics(pop),
events = list(death_event,birth_event),
parameters = params)

5.4 Simulation

The simulation of the IBM is based on the algorithms presented in Section 4.2 and Section 4.3. The
user has first to specify bounds for the intensity or interaction functions of each event type. The
random evolution of the population can then be simulated over a period of time [0, 𝑇] by calling the
function popsim.

Events bounds

Since the IBM simulation algorithm is based on an acceptance-rejection method for simulating
random times, the user has to specify bounds for the intensity (or interaction) functions of each
event (see Assumption 3.2 and Assumption 3.3). These bounds should be stored in a named vector,
where for event 𝑒, the name corresponding to the event bound ̄𝜇𝑒, �̄�𝑒 or �̄� 𝑒 is the event name defined
during the event creation step.

In Example 5.1 from previous section the intensity bound for birth events is �̄�𝑏. Since the death
intensity function is not bounded, the user will have to specify a maximum age 𝑎max in popsim (all
individuals above 𝑎max die automatically). Then, the bound for death events is �̄�𝑑 = 𝛼 exp(𝛽𝑎max). In
the example, the death event has been named my_death_event. No name has been specified for the
birth event which thus has the default name birth. Then,

a_max <- 120 # maximum age
events_bounds <- c("my_death_event" = params$death_rate(a_max),

"birth" = max(params$birth_rate))

26

Once the model and events bounds have been defined, a random trajectory of the population can be
simulated by calling

sim_out <- popsim(model, pop, events_bounds, params,
age_max = a_max, time = 30)

Optional parameters

If there are no events with intensity of class interaction, then the simulation can be parallelized
easily by setting the optional parameter multithreading (FALSE by default) to TRUE. By default,
the number of threads is the number of concurrent threads supported by the available hardware
implementation. The number of threads can be set manually with the optional argument num_threads.
By default, when the proportion of dead individuals in the population exceeds 10%, dead individuals
are removed from the current population used in the algorithm (see Remark 4.2). The user can
modify this ratio using the optional argument clean_ratio, or by removing dead individuals from
the population with a certain frequency, given by the clean_step argument. Finally, the user can
also define the seed of the random number generator stored in the argument seed.

Outputs and treatment of swap events

The output of the popsim function is a list containing three elements: a data frame population
containing the output population 𝑍𝑇 (or a list of populations (𝑍𝑡1 , … 𝑍𝑡𝑛) if time is a vector of times),
a numeric vector logs of variables related to the simulation algorithm (including the simulation time
and number of proposed/accepted events), and the list arguments of the simulation inputs, including
the initial population, parameters and event bounds used for the simulation.

When there are no swap events (individuals don’t change of characteristics), the evolution of the
population over the period [0, 𝑇] is recorded in a single data frame sim_out$population where each
line contains the information of an individual who lived in the population over the period [0, 𝑇] (see
Remark 3.1).

When there are swap events (individuals can change of characteristics), recording the dates of
swap events and changes of characteristics following each swap event and for each individual in
the population is a memory intensive and computationally costly process. To maintain efficient
simulations in the presence of swap events, the argument time of popsim can be defined as a vector
of dates (𝑡0, … , 𝑡𝑛). In this case, popsim returns in the object population a list of 𝑛 populations
representing the population at time 𝑡1, … 𝑡𝑛, simulated from the initial time 𝑡0. For 𝑖 = 1… 𝑛, the 𝑖th
data frame is the population 𝑍𝑡𝑖 , i.e. individuals who lived in the population during the period [𝑡0, 𝑡𝑖],
with their characteristics at time 𝑡𝑖.

It is also possible to isolate the individuals’ life course, by adding an id column to the popu-
lation, which can be done by setting id=TRUE in the population construction, or by calling the
add_characteristic function to an existing population, in order to identify each individual with a
unique integer.

Base functions to study the simulation outputs are provided in the package. For instance, the
population age pyramid can computed at a given time, as well as death and exposure tables. Several
illustrations of the outputs functions are given in the example Section 6 and Section 7.

6 Insurance portfolio

This section provides an example of how to use the IBMPopSim package to simulate a heterogeneous
life insurance portfolio (see also vignette(IBMPopSim_insurance_portfolio)).

27

https://daphnegiorgi.github.io/IBMPopSim/articles/IBMPopSim_insurance_portfolio.html

We consider an insurance portfolio consisting of male policyholders, of age greater than 65. These
policyholders are characterized by their age, assumed to be less than 𝑎max = 110, and risk class
𝑥 ∈ 𝒳 = {1, 2}.

Entries in the portfolio New policyholders enter the population at a constant Poisson rate 𝜇𝑒𝑛 = 𝜆,
which means that on average, 𝜆 individuals enter the portfolio each year. A new individual enters
the population at an age a that is uniformly distributed between 65 and 70, and is in risk class 1 with
probability 𝑝.

Death events A baseline age and time specific death rate is first calibrated on “England and Wales
(EW)” males mortality historic data (source: Human Mortality Database https://www.mortality.org/),
and projected for 30 years using the Lee-Carter model with the package StMoMo (see A. M. Villegas,
Kaishev, and Millossovich (2018)). The forecasted baseline death intensity is denoted by 𝑑(𝑡, 𝑎),
defined by:

𝑑(𝑡, 𝑎) =
29
∑
𝑘=0

1{𝑘≤𝑡<𝑘+1}𝑑𝑘(𝑎), ∀ 𝑡 ∈ [0, 30] and 𝑎 ∈ [65, 𝑎max], (16)

with 𝑑𝑘(𝑎) the point estimate of the forecasted mortality rate for age 𝑎 and year 𝑘.
Individuals in risk class 1 are assumed to have mortality rates that are 20% higher than the baseline
mortality (for instance, the risk class could refer to smokers), while individuals in risk class 2 are
assumed to have mortality rates that are 20% lower than the baseline (non smokers). The death
intensity of an individual 𝐼 = (𝜏𝑏, ∞, 𝑥), of age 𝑎(𝐼 , 𝑡) = 𝑡 − 𝜏𝑏 at time 𝑡 and in risk class 𝑥 ∈ {1, 2} is
thus the function

𝜆𝑑(𝑡, 𝐼) = 𝛼𝑥𝑑(𝑡, 𝑎(𝐼 , 𝑡)), 𝛼1 = 1.2, 𝛼2 = 0.8.

In particular, the death intensity verifies Assumption 3.3 since:

𝜆𝑑(𝑡, 𝐼) ≤ ̄𝑑 ∶= 𝛼1 sup
𝑡∈[0,30]

𝑑(𝑡, 𝑎max). (17)

Exits from the portfolio Individuals exit the portfolio at a constant (individual) rate 𝜆𝑒𝑥(𝑡, 𝐼) = 𝜇𝑖
only depending on their risk class 𝑖 ∈ {1, 2}.

6.1 Population

We start with an initial population of 30 000 males of age 65, distributed uniformly in each risk class.
The population data frame has thus the two (mandatory) columns birth (here the initial time is
𝑡0 = 0) and death (NA if alive), and an additional column risk_cls corresponding to the policyholders
risk class. Since there are entry and exit events, the entry and out flags of the population constructor
are set to TRUE.

N <- 30000
pop_df <- data.frame("birth" = rep(-65,N), "death" = rep(NA,N),

"risk_cls" = rep(1:2,each=N/2))
pop_init <- population(pop_df, entry=TRUE, out=TRUE)

6.2 Events

Entry events The age of the new individual is determined by the kernel_code argument in the
mk_event_poisson function.

entry_params <- list("lambda" = 30000, "p" = 0.5)
entry_event <- mk_event_poisson(

type = "entry",

28

https://www.mortality.org/

intensity = "lambda",
kernel_code = "if (CUnif() < p) newI.risk_cls =1;

else newI.risk_cls= 2;
double a = CUnif(65, 70);
newI.set_age(a, t);")

Note that the variables newI and t, as well as the function CUnif(), are implicitly defined and usable
in the kernel_code. The field risk_cls comes from the names of characteristics of individuals in
the population. The names lambda and p are parameter names that will be specified in the R named
list params.

Here we use a constant 𝜆 as the event intensity, but we could also use a rate 𝜆(𝑡) that depends on
time, using the function mk_event_poisson_inhomogeneous.

Death and exit events The baseline death intensity defined in Equation 16 and obtained with the
package StMoMo is stored in the variable death_male.

StMoMo death rates
library('StMoMo')
library('reshape2')
EWStMoMoMale <- StMoMoData(EWdata_hmd, series = "male")
LC <- lc()
ages.fit <- 65:100
years.fit <- 1950:2016
LCfitMale <- fit(LC, data = EWStMoMoMale, ages.fit = ages.fit, years.fit = years.fit)
t <- 30
LCforecastMale <- forecast(LCfitMale, h = t)
d_k <- apply(LCforecastMale$rates, 2, function(x) stepfun(66:100, x))
breaks <- 1:29
death_male <- piecewise_xy(breaks,d_k)

The death and exit intensities are of class individual (see Table 2a). Hence, the death and exit events
are created with the mk_event_individual function.

death_params <- list("death_male" = death_male, "alpha" = c(1.2, 0.8))
death_event <- mk_event_individual(

type = "death",
intensity_code = "result = alpha[I.risk_cls-1] * death_male(t, I.age(t));")

exit_params = list("mu" = c(0.001, 0.06))
exit_event <- mk_event_individual(

type = "exit",
intensity_code = "result = mu[I.risk_cls-1]; ")

6.3 Model creation and simulation

The model is created from all the previously defined building blocks, by calling the mk_model.

model <- mk_model(
characteristics = get_characteristics(pop_init),
events = list(entry_event, death_event, exit_event),
parameters = c(entry_params, death_params, exit_params))

Once the model is compiled, it can be used with different parameters and run simulations for various
scenarios. Similarly, the initial population (here pop_df) can be modified without rerunning the

29

mk_model function. The bounds for entry events is simply the intensity 𝜆. For death events, the
bound is given by ̄𝑑 defined in Equation 17, which is stored in the death_max variable.

death_max <- max(sapply(d_k, function(x) { max(x) }))
bounds <- c("entry" = entry_params$lambda,

"death" = death_max,
"exit" = max(exit_params$mu))

sim_out <- popsim(
model = model,
initial_population = pop_init,
events_bounds = bounds,
parameters = c(entry_params, death_params, exit_params),
time = 30,
age_max = 110,
multithreading = TRUE)

6.4 Outputs

The data frame sim_out$population consists of all individuals present in the portfolio during the
period of [0, 30], including the individuals in the initial population and those who entered the
portfolio. Each row represents an individual, with their date of birth, date of death (NA if still alive at
the end of the simulation), risk class, and characteristics entry and out. Recall that if an individual
enters the population at time 𝑡, his entry characteristic is automatically set up to be equal to 𝑡. The
characteristics out is set to TRUE for individuals who left the portfolio due to an exit event.

In this example, the simulation time over 30 years, starting from an initial population of 30 000
individuals is very fast (see below), for an acceptance rate of proposed event of approximately 25%.
At the end of the simulation, the number of alive individuals is approximately 430 000.

[1] "Number of alive individuals in the population at final time T=30 : 426721"

[1] "Execution time : 0.33s"

[1] "Proportion of effective events and proposed events : 0.25"

Initially in the portfolio (at 𝑡 = 0), there is the same number of 65 years old policyholders in each
risk class. However, policyholders in the risk class 2 with lower mortality rates leave the portfolio at
higher rate than policyholders in the risk class 1 : 𝜇2 > 𝜇1. Therefore, the heterogeneous portfolio
composition changes with time, including more and more individuals in risk class 1 with higher
mortality rates, but with variations across age classes. To illustrate the composition of the total
population at the end of the simulation (𝑡 = 30), we present in Figure 2 the age pyramid of the final
composition of the portfolio obtained with the age_pyramid and plot functions of the pyramid class.

30

65 − 66
67 − 68
69 − 70
71 − 72
73 − 74
75 − 76
77 − 78
79 − 80
81 − 82
83 − 84
85 − 86
87 − 88
89 − 90
91 − 92
93 − 94
95 − 96
97 − 98

0 5000 10000 15000 20000 25000
Number of individuals

A
ge

Group

1

2

Figure 2: Portfolio age pyramid at t = 30 for individuals in risk class 1 (blue) and 2 (red).

IBMPopSim also allows the fast computation of exact life tables from truncated and censored individual
data (due to entry and exit events), using the functions death_table and exposure_table. These
function are particularly efficient, since the computations are made using the Rccp library.

age_grp <- 65:95
Dx_pop <- death_table(sim_out$population, ages = age_grp, period = 0:30)
Ex_pop <- exposure_table(sim_out$population, ages = age_grp, period = 0:30)
mx_pop <- Dx_pop/Ex_pop

In Figure 3, we illustrate the central death rates in the simulated portfolio at final time. Due to the
mortality differential between risk class 1 and 2, one would expect to observe more individuals in
risk class 2 at higher ages. However, due to exit events, a higher proportion of individuals in risk
class 1 exit the portfolio over time, resulting in a greater proportion of individuals in risk class 1 at
higher ages than what would be expected in the absence of exit events. Consequently, the mortality
rates in the portfolio are more aligned with those of risk class 1 at higher ages. This is a simple
example of how composition changes in the portfolio can impact aggregated mortality rates and
potentially compensate or reduce an overall mortality reduction (see also (Kaakaï et al. 2019)).

7 Population with genetically variable traits

This section provides an example of how to use the IBMPopSim package to simulate an age-structured
population with interactions, based on the model proposed in Example 1 of Ferrière and Tran (2009)
(see also Méléard and Tran (2009)).

In this model, individuals are characterized by their body size at birth 𝑥0 ∈ [0, 4] and by their physical
age 𝑎 ∈ [0, 2]. The body size of an individual 𝐼 = (𝜏 𝑏, ∞, 𝑥0) at time 𝑡 is a linear function of its age
𝑎(𝐼 , 𝑡) = 𝑡 − 𝜏 𝑏:

𝑥(𝑡) = 𝑥0 + 𝑔𝑎(𝐼 , 𝑡),

where 𝑔 is a constant growth rate assumed to be identical for all individuals.

Birth events The birth intensity of each individual 𝐼 = (𝜏 𝑏, ∞, 𝑥0) depends on a parameter 𝛼 > 0
and on its initial size, as given by the equation

𝜆𝑏(𝑡, 𝐼) = 𝛼(4 − 𝑥0) ≤ �̄�𝑏 = 4𝛼. (18)

31

−5

−4

−3

−2

−1

70 80 90
Age

Lo
g

m
or

ta
lit

y
ra

te
s

Portfolio

Risk class 1

Risk class 2

Figure 3: Portfolio central death rates at t = 30 (black).

Thus, smaller individuals have a higher birth intensity. When a birth occurs, the new individual
inherits the same birth size 𝑥0 as its parent with high probability 1 − 𝑝, or a mutation can occur with
probability 𝑝, resulting in a birth size given by

𝑥′0 = min(max(0, 𝑥0 + 𝐺), 4), (19)

where 𝐺 is a Gaussian random variable with mean 0 and variance 𝜎2.

Death events Due to competition between individuals, the death intensity of an individual depends
on the size of other individuals in the population. Bigger individuals have a better chance of survival.
If an individual 𝐼 = (𝜏 𝑏, ∞, 𝑥0) of size 𝑥(𝑡) = 𝑥0 + 𝑔𝑎(𝐼 , 𝑡) encounters an individual 𝐽 = (𝜏 𝑏𝐽 , ∞, 𝑥′0) of
size 𝑥′(𝑡) = 𝑥′0 + 𝑔𝑎(𝐽 , 𝑡), then it can die with the intensity

𝑊(𝑡, 𝐼 , 𝐽) = 𝑈 (𝑥(𝑡), 𝑥′(𝑡)),

where the interaction function 𝑈 is defined by

𝑈 (𝑥, 𝑦) = 𝛽 (1 − 1
1 + 𝑐 exp(−4(𝑥 − 𝑦))

) ≤ �̄� = 𝛽. (20)

The death intensity of an individual 𝐼 at time 𝑡 and in a population 𝑍 is the result of interactions with
all individuals in the population, including itself, and is given by

𝜆𝑑𝑡 (𝐼 , 𝑍) = ∑
𝐽=(𝜏 𝑏,∞,𝑥′0)∈𝑍

𝑊(𝑥0 + 𝑔𝑎(𝐼 , 𝑡), 𝑥′0 + 𝑔𝑎(𝐽 , 𝑡)),

7.1 Population

We use an initial population of 900 living individuals, all of whom have the same size and ages
uniformly distributed between 0 and 2 years.

32

N <- 900
x0 <- 1.06
agemin <- 0.
agemax <- 2.

pop_df <- data.frame(
"birth" = -runif(N, agemin, agemax), # Uniform age in [0,2]
"death" = as.double(NA), # All individuals are alive
"birth_size" = x0) # All individuals have the same initial birth size x0

pop_init <- population(pop_df)

7.2 Events

7.2.1 Birth events

The parameters involved in a birth event are the probability of mutation 𝑝, the variance of the
Gaussian random variable and the coefficient 𝛼 of the intensity.

params_birth <- list("p" = 0.03, "sigma" = sqrt(0.01), "alpha" = 1)

The birth intensity Equation 18 is of class individual. Hence, the event is created by calling the
mk_event_individual function. The size of the new individual is given in the kernel following
Equation 19.

birth_event <- mk_event_individual(
type = "birth",
intensity_code = "result = alpha*(4 - I.birth_size);",
kernel_code = "if (CUnif() < p)

newI.birth_size = min(max(0.,CNorm(I.birth_size,sigma)),4.);
else

newI.birth_size = I.birth_size;")

7.2.2 Death events

The death intensity Equation 20 is of class interaction. Hence, the event is created by calling the
mk_event_interaction function. The parameters used for this event are the growth rate 𝑔, the
amplitude of the interaction function 𝛽, and the strength of competition 𝑐.

params_death <- list("g" = 1, "beta" = 2./300., "c" = 1.2)
death_event <- mk_event_interaction(
type = "death",
interaction_code = "double x_I = I.birth_size + g * age(I,t);

double x_J = J.birth_size + g * age(J,t);
result = beta*(1.-1./(1.+c*exp(-4.*(x_I-x_J))));")

7.3 Model creation and simulation

The model is created using the mk_model function.

model <- mk_model(
characteristics = get_characteristics(pop_init),
events = list(birth_event, death_event),
parameters = c(params_birth, params_death))

33

The simulation of one scenario can then be launched with the call of the popsim function, after
computing the events bounds �̄�𝑏 = 4𝛼 and �̄� = 𝛽.

sim_out <- popsim(model = model,
initial_population = pop_init,
events_bounds = c("birth" = 4 * params_birth$alpha,

"death" = params_death$beta),
parameters = c(params_birth, params_death),
age_max = 2,
time = 500)

Based on the results of a simulation, we can reproduce the numerical results of Ferrière and Tran
(2009). In Figure 4, we draw a line for each individual in the population to represent their birth size
during their lifetime.

Figure 4: Evolution of birth size

In this example, the randomized Algorithm 3 allows for much faster computation times than the
model implemented below with Algorithm 2 (“full” algorithm):

death_event_full <- mk_event_interaction(type = "death",
interaction_type= "full",
interaction_code = "double x_I = I.birth_size + g * age(I,t);

double x_J = J.birth_size + g * age(J,t);
result = beta * (1.- 1./(1. + c * exp(-4. * (x_I-x_J))));"

)

model_full <- mk_model(characteristics = get_characteristics(pop_init),
events = list(birth_event, death_event_full),
parameters = c(params_birth, params_death))

sim_out_full <- popsim(model = model_full,
initial_population = pop_init,
events_bounds =c("birth" = 4 * params_birth$alpha, "death" = params_death$beta),
parameters = c(params_birth, params_death),
age_max = 2,
time = 500)

34

[1] "The full algorithm is 23 times slower than the randomized version"

In Figure 5, the two algorithms are compared for different population sizes. We progressively decrease
the value of the mortality rate parameter 𝛽 and increase the birth rate parameter 𝛼. Starting with the
values provided in Ferrière and Tran (2009), 𝛼 = 1 and 𝛽 = 2/300, resulting in a stationary population
size of approximately 𝑁 = 360 individuals for a sample of 50 simulations, we can easily increase the
stationary population size to approximately 𝑁 = 2600 individuals with 𝛼 = 2 and 𝛽 = 1/300.4 In
the log-scaled figure, we can observe the trend of computation time as a function of the population
size 𝑁, which is linear for the randomized algorithm and quadratic for the full one (Algorithm 2).
We can also see that the randomized version of the algorithm is between 17 to 100 times faster than
the full one in this example, taking only 2 seconds in average for the randomized version versus 211
seconds for Algorithm 2 for the biggest population size (𝑁 = 2600) and 𝑇 = 500.

Figure 5: Full vs random algorithm computation time

8 Appendix

8.1 Recall on Poisson random measures

We recall below some useful properties of Poisson random measures, mainly following Chapter 6
of (Çinlar 2011). We also refer to (Kallenberg 2017) for a more comprehensive presentation of random
counting measures.

Definition 8.1 (Poisson Random Measures). Let 𝜇 be a 𝜎-finite diffuse measure on a Borel subspace
(𝐸, ℰ) of (ℝ𝑑,ℬ(ℝ𝑑)). A random counting measure 𝑄 = ∑𝑘≥1 𝛿𝑋𝑘 is a Poisson (counting) random
measure of mean measure 𝜇 if

4The choices (𝛼, 𝛽) ∈ {(1, 2/300), (1, 1/300), (1.5, 1/300), (2, 1/300)} lead to the stationary population sizes 𝑁 ∈
{360, 900, 1800, 2600}. For each set of parameters, we generated a new initial population, which was used for a benchmark
of 50 simulations with both randomized and full algorithm. The simulations run on a Intel Core i7-8550U CPU 1.80GHz ×
8 processor, with 15.3 GiB of RAM, under Debian GNU/Linux 11.

35

1. ∀𝐴 ∈ ℰ, 𝑄(𝐴) is a Poisson random variable with 𝔼[𝑄(𝐴)] = 𝜇(𝐴).
2. For all disjoints subsets 𝐴1, … , 𝐴𝑛 ∈ ℰ, 𝑄(𝐴1), … , 𝑄(𝐴𝑛) are independent Poisson random

variables.

Let us briefly recall here some simple but useful operations on Poisson measures. In the following, 𝑄
is a Poisson measure of mean measure 𝜇, unless stated otherwise.

Proposition 8.1 (Restricted Poisson measure). If 𝐵 ∈ ℰ, then, the restriction of 𝑄 to 𝐵 defined by

𝑄𝐵 = 1𝐵𝑄 = ∑
𝑘≥1

1𝐵(𝑋𝑘)𝛿𝑋𝑘

is also a Poisson random measure, of mean measure 𝜇𝐵 = 𝜇(⋅ ∩ 𝐵).

Proposition 8.2 (Projection of Poisson measure). If 𝐸 = 𝐹1 × 𝐹2 is a product space, then the projection

𝑄1(d𝑥) = ∫
𝐹2
𝑄(d𝑥, d𝑦)

is a Poisson random measure of mean measure 𝜇1(d𝑥) = ∫𝐹2 𝜇(d𝑥, d𝑦).

8.1.1 Link with Poisson processes

Let 𝑄 = ∑𝑘≥1 𝛿𝑇𝑘 a Poisson random measure on 𝐸 = ℝ+ with mean measure 𝜇(d𝑡) = Λ(𝑡)d𝑡 absolutely
continuous with respect to the Lebesgue measure, 𝜇(𝐴) = ∫𝐴 Λ(𝑡)d𝑡. The counting process (𝑁𝑡)𝑡≥0
defined by

𝑁𝑡 = 𝑄([0, 𝑡]) = ∑
𝑘≥1

1{𝑇𝑘≤𝑡}, ∀ 𝑡 ≥ 0, (21)

is an inhomogeneous Poisson process with intensity function (or rate) 𝑡 ↦ Λ(𝑡). In particular, when
Λ(𝑡) ≡ 𝑐 is a constant, 𝑁 is a homogeneous Poisson process with rate 𝑐. Assuming that the atoms are
ordered 𝑇1 < 𝑇2 < …, we recall that the sequence (𝑇𝑘+1 − 𝑇𝑘)𝑘≥1 is a sequence of i.i.d. exponential
variables of parameter 𝑐.

8.1.2 Marked Poisson measures on 𝐸 = ℝ+ × 𝐹

We are interested in the particular case when 𝐸 is the product space ℝ+ × 𝐹, with (𝐹 , ℱ) a Borel
subspace of ℝ𝑑. Then, a random counting measure is defined by a random set 𝑆 = {(𝑇𝑘, Θ𝑘), 𝑘 ≥ 1}.
The random variables 𝑇𝑘 ≥ 0 can be considered as time variables, and constitute the jump times of
the random measure, while the variables Θ𝑘 ∈ 𝐹 represent space variables.

We recall in this special case the Theorem VI.3.2 in (Çinlar 2011).

Proposition 8.3 (Marked Poisson measure). Let 𝑚 be a 𝜎–finite diffuse measure on ℝ+, and 𝐾 a
transition probability kernel from (ℝ+,ℬ(ℝ+)) into (𝐹 , ℱ). Assume that the collection (𝑇𝑘)𝑘≥1 forms a
Poisson process (𝑁𝑡) = (∑𝑘≥1 1{𝑇𝑘≤𝑡}) with mean 𝑚(d𝑡) = Λ(𝑡)d𝑡, and that given (𝑇𝑘)𝑘≥1, the variables
Θ𝑘 are conditionally independent and have the respective distributions 𝐾(𝑇𝑘, ⋅).

1. Then, {(𝑇𝑘, Θ𝑘); 𝑘 ≥ 1} forms a Poisson random measure 𝑄 = ∑𝑘≥1 𝛿(𝑇𝑘,Θ𝑘) on (ℝ+ × 𝐹 ,ℬ(ℝ+) ⊗
ℱ), called a Marked point process , with mean 𝜇 defined by

𝜇(d𝑡 , d𝑦) = Λ(𝑡)d𝑡𝐾(𝑡, d𝑦).

2. Reciprocally let 𝑄 be a Poisson randommeasure of meanmeasure 𝜇(d𝑡 , d𝑦), admitting the following
disintegration with respect to the first coordinate: 𝜇(d𝑡 , d𝑦) = Λ̃(𝑡)d𝑡𝜈(𝑡 , d𝑦), with 𝜈(𝑡, 𝐹) < ∞.

Let 𝐾(𝑡, d𝑦) =
𝜈(𝑡, d𝑦)
𝜈(𝑡, 𝐹)

and Λ(𝑡) = 𝜈(𝑡, 𝐹)Λ̃(𝑡). Then, 𝑄 = ∑𝑘≥1 𝛿(𝑇𝑘,Θ𝑘) is a marked Poisson

36

measure with (𝑇𝑘, Θ𝑘)𝑘∈ℕ∗ defined as above. In particular, the projection 𝑁 = (𝑁𝑡)𝑡≥0 of the
Poisson measure on the first coordinate,

𝑁𝑡 = 𝑄([0, 𝑡] × 𝐹) = ∑
𝑘≥1

1[0,𝑡]×𝐹(𝑇𝑘, Θ𝑘) = ∑
𝑘≥1

1{𝑇𝑘≤𝑡}, ∀ 𝑡 ≥ 0,

is an inhomogeneous Poisson process of rate Λ(𝑡) = 𝜈(𝑡, 𝐹)Λ̃(𝑡).

When the transition probability kernel 𝐾 does not depend on the time: 𝐾(𝑡, 𝐴) = 𝜈(𝐴) for some
probability measure 𝜈, then the marks (Θ𝑘)𝑘≥1 form an i.i.d. sequence with distribution 𝜈, independent
of (𝑇𝑘)𝑘≥1.

The preceding proposition thus yields a straightforward iterative simulation procedure for a Marked
Poisson process on [0, 𝑇] × 𝐹 with mean measure 𝜇(d𝑡 , d𝑦) = 𝑐d𝑡𝐾(𝑡, d𝑦) and 𝑐 > 0. The procedure is
described in Algorithm 4 .

Algorithm 4 Simulation of Marked Poisson measure
1: Input: Constant 𝑐, simulatable kernel 𝐾 and final time 𝑇
2: Output: Times (𝑇1, … , 𝑇𝑛) and Marks (𝑌1, … , 𝑌𝑛) of the Marked Poisson measure of mean

𝜇(d𝑡 , d𝑦) = 𝑐d𝑡𝐾(𝑡, d𝑦) in [0, 𝑇] × 𝐹.
3: Initialization draw 𝑇1 ∼ ℰ(𝑐) and draw 𝑌1 ∼ 𝐾(𝑇1, d𝑦)
4: while condition do
5: increment iterative variable 𝑘 ⟵ 𝑘 + 1
6: compute next jump time 𝑇𝑘 ⟵ 𝑇𝑘−1 + ℰ(𝑐)
7: draw a conditional mark 𝑌𝑘 ∼ 𝐾(𝑇𝑘, d𝑦)
8: end while

Figure 6: Example of Marked Poisson measure on [0, 𝑇] with 𝑚(d𝑡) = 𝐿d𝑡 (jump times occur at
Poisson arrival times of rate 𝐿) and with 𝜈(d𝑦) = 1

𝐿1[0,𝐿](𝑦)d𝑦 (marks are drawn uniformly on [0, 𝐿]).
The mean measure is then 𝜇(d𝑡 , d𝑦) = d𝑡1[0,𝐿](𝑦)d𝑦.

8.2 Pathwise representation of IBMs

Notation reminder The population’s evolution is described by the measure valued process (𝑍𝑡)𝑡≥0.
Several types of events 𝑒 can occur to individuals denoted by 𝐼. If an event of type 𝑒 occur to the
individual 𝐼 at time 𝑡, then the population state 𝑍𝑡− is modified by 𝜙𝑒(𝑡, 𝐼). If 𝑒 ∈ ℰ ∪ ℰ𝑊, then events

37

of type 𝑒 occur with an intensity ∑𝑁𝑡
𝑘=1 𝜆

𝑒
𝑡 (𝐼 , 𝑍𝑡), with 𝜆𝑒𝑡 (𝐼 , 𝑍𝑡) defined by Equation 7. If 𝑒 ∈ 𝒫, then

events of type 𝑒 occur in the population at a Poisson intensity of (𝜇𝑒𝑡).

8.2.1 Proof of Theorem 3.1

Proof. For ease of notation, we prove the case when 𝒫 = ∅ (there are no events with Poisson
intensity).

• Step 1. The existence of a solution to Equation 12 is obtained by induction. Let 𝑍 1 be the
unique solution the thinning equation:

𝑍 1
𝑡 = 𝑍0 + ∫

𝑡

0
∫
𝒥 ×ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝑘≤𝑁0}1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,𝑍0)}𝑄(d𝑠, d𝑘, d𝑒, d𝜃), ∀0 ≤ 𝑡 ≤ 𝑇 .

Let 𝑇1 be the first jump time of 𝑍 1. Since 𝑍 1
𝑠− = 𝑍0 and 𝑁𝑠− = 𝑁0 on [0, 𝑇1], 𝑍 1 is solution of

Equation 12 on [0, 𝑇1].

Let us now assume that Equation 12 admits a solution 𝑍 𝑛 on [0, 𝑇𝑛], with 𝑇𝑛 the 𝑛–th event time in
the population. Let 𝑍 𝑛+1 be the unique solution of the thinning equation:

𝑍 𝑛+1
𝑡 = 𝑍 𝑛

𝑡∧𝑇𝑛 + ∫
𝑡

𝑡∧𝑇𝑛
∫
𝒥 ×ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,𝑍 𝑛
𝑇𝑛)}

1{𝑘≤𝑁 𝑛
𝑇𝑛}
𝑄(d𝑠, d𝑘, d𝑒, d𝜃).

First, observe that 𝑍 𝑛+1 coincides with 𝑍 𝑛 on [0, 𝑇𝑛]. Let 𝑇𝑛+1 be the (𝑛 + 1)–th jump of 𝑍 𝑛+1.
Furthermore, 𝑍 𝑛+1

𝑠− = 𝑍 𝑛
𝑇𝑛 and 𝑁 𝑛+1

𝑠− = 𝑁 𝑛
𝑇𝑛 on [𝑇𝑛, 𝑇𝑛+1] (nothing happens between two successive

event times), 𝑍 𝑛+1 verifies for all 𝑡 ≤ 𝑇𝑛+1:

𝑍 𝑛+1
𝑡 = 𝑍 𝑛

𝑡∧𝑇𝑛 + ∫
𝑡

𝑡∧𝑇𝑛
∫
𝒥 ×ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,𝑍 𝑛+1
𝑠−)}1{𝑘≤𝑁 𝑛+1

𝑠− }𝑄(d𝑠, d𝑘, d𝑒, d𝜃).

Since, 𝑍 𝑛 is a solution of Equation 12 on [0, 𝑇𝑛] coinciding with 𝑍 𝑛+1 this achieves to prove that 𝑍 𝑛+1

is solution of Equation 12 on [0, 𝑇𝑛+1]. Finally, let 𝑍 = lim𝑛→∞ 𝑍 𝑛. For all 𝑛 ≥ 1, 𝑇𝑛 is the 𝑛–th event
time of 𝑍, and 𝑍 is solution of Equation 12 on all time intervals [0, 𝑇𝑛 ∧ 𝑇] by construction.

By Lemma 3.1 𝑇𝑛 ⟶
𝑛→∞

∞. Thus, by letting 𝑛 → ∞ we can conclude that 𝑍 is a solution of Equation 12
on [0, 𝑇].

• Step 2. Let �̃� be a solution of Equation 12. Using the same arguments than in Step 1, it is
straightforward to show that �̃� coincides with 𝑍 𝑛 on [0, 𝑇𝑛], for all 𝑛 ≥ 1. Thus, �̃� = 𝑍, with
achieves to prove uniqueness.

8.2.2 Proof of Lemma 3.1

The proof is obtained using pathwise comparison result, generalizing those obtained in (Kaakai and
El Karoui 2023).

Proof. Let 𝑍 be a solution of Equation 12. For all 𝑒 ∈ 𝒫 ∪ℰ ∪ℰ𝑊, let 𝑁 𝑒 be the process counting the
occurrence of events of type 𝑒 in the population. 𝑁 𝑒 is a counting process of {ℱ𝑡}-intensity (Λ𝑒

𝑡 (𝑍𝑡−)),
solution of

𝑁 𝑒
𝑡 = ∫

𝑡

0
∫
ℕ×ℝ+

1{𝑘≤𝑁𝑠−}1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,𝑍𝑠−)}𝑄(d𝑠, d𝑘, {𝑒}, d𝜃), if 𝑒 ∈ ℰ ∪ ℰ𝑊,

𝑁 𝑒
𝑡 = ∫

𝑡

0
∫
ℝ+

1{𝜃≤𝜇𝑒𝑠 }𝑄
𝒫(d𝑠, {𝑒}, d𝜃), if 𝑒 ∈ 𝑃.

(22)

38

By definition, the jump times of the multivariate counting process (𝑁 𝑒)𝑒∈𝒫 ∪ℰ∪ℰ𝑊 are the population
event times (𝑇𝑛)𝑛≥0. The idea of the proof is to show that (𝑁 𝑒)𝑒∈𝒫 ∪ℰ∪ℰ𝑊 does not explode in finite
time, by pathwise domination with a simpler multivariate counting process. The first steps are to
control the population size 𝑁𝑡 = 𝑁0 + 𝑁 𝑏

𝑡 + 𝑁 𝑒𝑛
𝑡 .

Step 1 Let (�̄� 𝑏, �̄� 𝑒𝑛) be the 2-dimensional counting process defined as follows: for 𝑒 ∈ {𝑏, 𝑒𝑛}, �̄� 𝑒
0 = 0

and

�̄� 𝑒
𝑡 = ∫

𝑡

0
∫
ℕ×ℝ+

1{𝑘≤𝑁0+�̄�𝑠−}1{𝜃≤𝑓 𝑒(𝑁0+�̄�𝑠−)}𝑄(d𝑠, d𝑘, {𝑒}, d𝜃), if 𝑒 ∈ ℰ ∪ ℰ𝑊,

�̄� 𝑒
𝑡 = ∫

𝑡

0
∫
ℝ+

1{𝜃≤ ̄𝜇𝑒}𝑄𝒫(d𝑠, {𝑒}, d𝜃) if 𝑒 ∈ 𝑃,
(23)

with �̄� ∶= �̄� 𝑏 + �̄� 𝑒𝑛 and 𝑓 𝑒 the function introduced in Assumption 3.4.
- If 𝑏, 𝑒𝑛 ∈ 𝑃, then �̄� is a inhomogeneous Poisson process.
- If 𝑏, 𝑒𝑛 ∈ ℰ ∪ ℰ𝑊, then it is straightforward to show that conditionally to 𝑁0, �̄� is a pure birth
Markov process with birth intensity function 𝑔(𝑛) = 𝑛(𝑓 𝑏(𝑁0 + 𝑛) + 𝑓 𝑒𝑛(𝑁0 + 𝑛)). In particular, by
Assumption 3.4, 𝑔 verifies the standard Feller condition for pure birth Markov processes (see e.g.
(Bansaye and Méléard 2015)):

∞
∑
𝑛=1

1
𝑔(𝑛)

.

- Finally, if 𝑏 ∈ ℰ and 𝑒𝑛 ∈ 𝑃 (or equivalently if 𝑏 ∈ 𝑃 and 𝑒𝑛 ∈ ℰ), then one can show easily that �̄� is
a pure birth Markov process with immigration, of birth intensity function 𝑔(𝑛) = ̄𝜇𝑒𝑛 + 𝑛𝑓 𝑏(𝑁0 + 𝑛)
(resp. 𝑔(𝑛) = ̄𝜇𝑏 + 𝑛𝑓 𝑒𝑛(𝑁0 + 𝑛)), also verifying the Feller condition. Therefore, there exists a
non-exploding solution of Equation 23, by Proposition 3.3 in (Kaakai and El Karoui 2023).

Step 2 The second step consists in showing that (𝑁 𝑏, 𝑁 𝑒𝑛) is strongly dominated by (�̄� 𝑏, �̄� 𝑒𝑛), i.e
that all jumps of (𝑁 𝑏, 𝑁 𝑒𝑛) are jumps of (�̄� 𝑏, �̄� 𝑒𝑛). Without loss of generality, we can assume that
𝑓 𝑒 ∶ ℕ → (0, +∞) is increasing since 𝑓 𝑒(𝑛) can be replaced by sup{𝑚≤𝑛} 𝑓

𝑒(𝑚).
Let 𝑒 ∈ {𝑏, 𝑒𝑛}. If 𝑒 ∈ 𝒫, then for all 𝑠 ∈ [0, 𝑇]

{𝜃 ≤ 𝜇𝑒𝑠 } ⊂ {𝜃 ≤ ̄𝜇𝑒},

which yields that all jumps of 𝑁 𝑒 are jumps of �̄� 𝑒.
If 𝑒 ∈ ℰ ∪ ℰ𝑊, the proof by induction is analogous to the proof of Proposition 2.1 in (Kaakai and El
Karoui 2023). Let 𝑇 𝑒1 be first jump time of 𝑁 𝑒, associated with the marks (𝐾 𝑒

1, Θ𝑒
1) of 𝑄 (or 𝑄𝒫). Then,

by Definition of Equation 22, 𝐾 𝑒
1 ≤ 𝑁0 and Θ𝑒

1 ≤ 𝜆𝑒𝑇 𝑒1 (𝐼𝐾 𝑒
1
, 𝑍0).

By Assumption 3.4, we have also

Θ𝑒
1 ≤ 𝜆𝑒𝑇 𝑒1 (𝐼𝐾 𝑒

1
, 𝑍0) ≤ 𝑓 𝑒(𝑁0) ≤ 𝑓 𝑒(𝑁0 + �̄�𝑇 𝑒,−1

), 𝐾 𝑒
1 ≤ 𝑁0 + �̄�𝑇 𝑒,−1

.

Thus, 𝑇 𝑒1 is also a jump time of �̄� 𝑒. By iterating this argument, we obtain that all jump times of 𝑁 𝑒

are jump times of �̄� 𝑒.
Thus, (𝑁 𝑏, 𝑁 𝑒𝑛) does not explode in finite time.

Step 3 It remains to show that for 𝑒 ∉ {𝑏, 𝑒𝑛}, 𝑁 𝑒 does not explode.
Let 𝑒 ≠ 𝑏, 𝑒𝑛. If 𝑒 ∈ 𝒫, the proof is the same than in Step 2. Otherwise, let:

ℎ𝑒𝑡 (𝑛) = sup
𝐼∈ℐ ,𝑚≤𝑛

𝜆𝑒𝑡 (𝐼 ,
𝑚
∑
𝑘=1

𝛿𝐼𝑘), ∀ 𝑡 ∈ [0, 𝑇] 𝑛 ∈ ℕ∗.

39

By Assumption 3.2 and Assumption 3.3, ℎ𝑒𝑡 (𝑛) < ∞, and we can introduce the non exploding counting
process �̄� 𝑒, defined by the thinning equation :

�̄� 𝑒
𝑡 = ∫

𝑡

0
∫
ℕ×ℝ+

1{𝑘≤𝑁0+�̄�𝑠−}1{𝜃≤ℎ𝑒𝑠(𝑁0+�̄�𝑠−)}𝑄(d𝑠, d𝑘, {𝑒}, d𝜃),

with �̄�𝑠 = �̄� 𝑏
𝑠 + �̄� 𝑒𝑛

𝑠 .
Finally, by Step 2, for 𝑠 ∈ [0, 𝑇] the population size 𝑁𝑠 = 𝑁0 + 𝑁 𝑏

𝑠 + 𝑁 𝑒𝑛
𝑠 is bounded a.s. by 𝑁0 + �̄�𝑠,

since all jumps of (𝑁 𝑏, 𝑁 𝑒𝑛) are jumps of (�̄� 𝑏, �̄� 𝑒𝑛). Thus, for all 𝑠 ∈ [0, 𝑇],

{𝑘 ≤ 𝑁𝑠−} ⊂ {𝑘 ≤ 𝑁0 + �̄�𝑠−}, and {𝜃 ≤ 𝜆𝑒𝑠(𝐼𝑘, 𝑍𝑠−)} ⊂ {𝜃 ≤ ℎ𝑒𝑠(𝑁0 + �̄�𝑠−)}.

This proves that all jumps of 𝑁 𝑒 are jumps �̄� 𝑒, and thus 𝑁 𝑒 does not explode in finite time.

8.2.3 Alternative pathwise representation

Theorem 8.1. Let 𝒥ℰ = ℕ × ℰ and 𝒥𝑊 = ℕ × ℰ𝑊.
Let 𝑄ℰ be a random Poisson measure on ℝ+ × 𝒥ℰ × ℝ+, of intensity d𝑡𝛿𝒥ℰ(d𝑘, d𝑒)1[0,�̄�𝑒](𝜃)d𝜃, and 𝑄

𝑊 a
random Poisson measure on ℝ+ × 𝒥𝑊 × ℕ × ℝ+, of intensity d𝑡𝛿𝒥ℰ(d𝑘, d𝑒))𝛿ℕ(d𝑗)1[0,�̄� 𝑒](𝜃)d𝜃. Finally,
let 𝑄𝒫 be a random Poisson measure on ℝ+ × 𝒫 × ℝ+, of intensity d𝑡𝛿𝑃(d𝑒)1[0, ̄𝜇𝑒](𝜃)d𝜃.
There exists a unique measure-valued process 𝑍, strong solution on the following SDE driven by Poisson
measure:

𝑍𝑡 = 𝑍0 + ∫
𝑡

0
∫
𝒥ℰ×ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝑘≤𝑁𝑠−}1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,𝑍𝑠−)}𝑄
ℰ(d𝑠, d𝑘, d𝑒, d𝜃)

+ ∫
𝑡

0
∫
𝒥𝑊×ℕ×ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝑘≤𝑁𝑠−}1{𝑗≤𝑁𝑠−}1{𝜃≤𝑊 𝑒(𝑠,𝐼𝑘,𝐼𝑗)}𝑄
𝑊(d𝑠, d𝑘, d𝑒, d𝑗, d𝜃),

+ ∫
𝑡

0
∫
𝒫 ×ℝ+

𝜙𝑒(𝑠, 𝐼𝑠−)1{𝜃≤𝜇𝑒𝑠 }𝑄
𝒫(d𝑠, d𝑒, d𝜃),

(24)

with 𝐼𝑠− an individual taken uniformly in 𝑍𝑠− .
Furthermore, the solution of Equation 24 has the same law than the solution of Equation 12.

The proof of Theorem 8.1 follows the same steps than the proof of Theorem 3.1.

8.3 Proof of Theorem 4.1

For ease of notation, we prove the case when 𝒫 = ∅ (there are no events with Poisson intensity).
Let 𝑍 be the population process obtained by Algorithm 2 , and (𝑇𝑛)𝑛≥0 the sequence of its jump times
(𝑇0 = 0).
Step 1 Let 𝑇1 be the first event time in the population, with its associated marks defining the type
𝐸1 of the event and the individual 𝐼1 to which this event occurs. By construction, (𝑇1, 𝐸1, 𝐼1) is
characterized by the first jump of:

𝑄0(d𝑡 , d𝑘, d𝑒) = ∫
ℝ+

1{𝜃≤𝜆𝑒𝑡 (𝐼𝑘,𝑍0)} ̄𝑄0(d𝑡 , d𝑘, d𝑒, d𝜃),

with ̄𝑄0 the Poisson measure introduced in the first step of the algorithm described in Section 4.2.

Since 𝑇1 is the first event time, the population composition stays constant, 𝑍𝑡 = 𝑍0, on {𝑡 < 𝑇1}. In
addition, recalling that the first event has the action 𝜙𝐸1(𝑇1, 𝐼1) (see Table 1) on the population 𝑍, we

40

obtain that:
𝑍𝑡∧𝑇1 = 𝑍0 + 1{𝑡≥𝑇1}𝜙

𝐸1(𝑇1, 𝐼1)

= 𝑍0 + ∫
𝑡∧𝑇1

0
∫
𝒥0

𝜙𝑒(𝑠, 𝐼𝑘)𝑄0(d𝑠, d𝑘, d𝑒)

= 𝑍0 + ∫
𝑡∧𝑇1

0
∫
𝒥0

∫
ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,𝑍0)} ̄𝑄0(d𝑠, d𝑘, d𝑒, d𝜃).

Since 𝑍𝑠− = 𝑍0 on {𝑠 ≤ 𝑇1}, the last equation can be rewritten as

𝑍𝑡∧𝑇1 = 𝑍0 + ∫
𝑡∧𝑇1

0
∫
𝒥0

∫
ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,𝑍𝑠−)} ̄𝑄0(d𝑠, d𝑘, d𝑒, d𝜃).

Step 2 The population size at the 𝑛–th event time 𝑇𝑛 is 𝑁𝑇𝑛 . The (𝑛 + 1)–th event type and the
individual to which this event occur are thus chosen in the set

𝒥𝑛 ∶= {1, … , 𝑁𝑇𝑛} × (ℰ ∪ ℰ𝑊).

Conditionally to ℱ𝑇𝑛 , let us first introduce the marked Poisson measure ̄𝑄𝑛 on [𝑇𝑛, ∞) × 𝒥𝑛 × ℝ+, of
intensity:

̄𝜇𝑛(d𝑡 , d𝑘, d𝑒, d𝜃) ∶= 1{𝑡>𝑇𝑛}Λ̄(𝑁𝑇𝑛)d𝑡
�̄�𝑒𝑛

Λ̄(𝑁𝑇𝑛)
𝛿𝒥𝑛(d𝑘, d𝑒)

1
�̄�𝑒𝑛

1[0,�̄�𝑒𝑛](𝜃)d𝜃,

= 1{𝑡>𝑇𝑛}d𝑡𝛿𝒥𝑛(d𝑘, d𝑒)1[0,�̄�𝑒𝑛](𝜃)d𝜃,
(25)

with 𝜆𝑒𝑛 = �̄�𝑒1𝑒∈ℰ + �̄� 𝑒𝑁𝑇𝑛1𝑒∈ℰ𝑊 .

By definition, ̄𝑄𝑛 has no jump before 𝑇𝑛.
As for the first event, the triplet (𝑇𝑛+1, 𝐸𝑛+1, 𝐼𝑛+1) is determined by the first jump of the measure
𝑄𝑛(d𝑠, d𝑘, d𝑒) ∶= ∫ℝ+ 1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,𝑍𝑇𝑛)}

̄𝑄𝑛(d𝑠, d𝑘, d𝑒, d𝜃), obtained by thinning of ̄𝑄𝑛. Finally, since the
population composition is constant on [𝑇𝑛, 𝑇𝑛+1[, 𝑍𝑡 = 𝑍𝑇𝑛 , the population on [0, 𝑇𝑛+1] is defined by:

𝑍𝑡∧𝑇𝑛+1 = 𝑍𝑡∧𝑇𝑛 + 1{𝑡≥𝑇𝑛+1}𝜙
𝐸𝑛+1(𝑇𝑛+1, 𝐼𝑛+1),

= 𝑍𝑡∧𝑇𝑛 + ∫
𝑡∧𝑇𝑛+1

𝑡∧𝑇𝑛
∫
𝒥𝑛×ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,𝑍𝑠−)} ̄𝑄𝑛(d𝑠, d𝑘, d𝑒, d𝜃).
(26)

Applying 𝑛 times Equation 26 yields that:

𝑍𝑡∧𝑇𝑛+1 = 𝑍0 +
𝑛
∑
𝑙=0

∫
𝑡∧𝑇𝑙+1

𝑡∧𝑇𝑙
∫
𝒥𝑙×ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,�̃�𝑠−)}
̄𝑄 𝑙(d𝑠, d𝑘, d𝑒, d𝜃).

Step 3 Finally, let �̃� be the solution of Equation 12, with (̃𝑇𝑛)𝑛≥0 the sequence of its event times.
Then, we can write similarly for all 𝑛 ≥ 0:

�̃�𝑡∧ ̃𝑇𝑛+1
= 𝑍0 +

𝑛
∑
𝑙=0

∫
𝑡∧ ̃𝑇𝑙+1

𝑡∧ ̃𝑇𝑙
∫
𝒥 ×ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,�̃�𝑠−)}1{𝑘≤�̃�𝑠−}𝑄(d𝑠, d𝑘, d𝑒, d𝜃),

= 𝑍0 +
𝑛
∑
𝑙=0

∫
𝑡∧ ̃𝑇𝑙+1

𝑡∧ ̃𝑇𝑙
∫
𝒥 ×ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,�̃�𝑠−)}1{𝜃≤�̃�𝑒𝑛}1{𝑘≤�̃� ̃𝑇𝑙
}𝑄(d𝑠, d𝑘, d𝑒, d𝜃),

since �̃�𝑠− = �̃�𝑇𝑙 on [̃𝑇𝑙, ̃𝑇𝑙+1], and

𝜆𝑒𝑠(𝐼𝑘, �̃�𝑠−) ≤ �̃�𝑒𝑛 ∶= �̄�𝑒1𝑒∈ℰ + �̄� 𝑒�̃� ̃𝑇𝑛
1𝑒∈ℰ𝑊

41

For each 𝑙 ≥ 0, let

�̃� 𝑙(d𝑡 , d𝑘, d𝑒, d𝜃) = 1{𝑡> ̃𝑇𝑙}
1{1,…,�̃� ̃𝑇𝑙

}(𝑘)1[0,�̃�𝑒𝑛](𝜃)𝑄(d𝑡 , d𝑘, d𝑒, d𝜃).

By Proposition 8.1, �̃� 𝑙 is, conditionally to ℱ𝑇𝑙 , a Poisson measure of intensity

1{𝑡> ̃𝑇𝑙}
d𝑡1{1,…,�̃� ̃𝑇𝑙

}(𝑘)𝛿𝒥(d𝑘, d𝑒)1[0,�̃�𝑒𝑛](𝜃)d𝜃.

It follows easily by induction that �̃� 𝑙 has thus the same distribution than ̄𝑄 𝑙, the Poisson measure with
the conditional intensity ̄𝜇𝑙 defined in Equation 25. Thus, 𝑍 is an exact simulation of Equation 12.

8.4 Acknowledgements

The research of Sarah Kaakai is funded by the European Union (ERC, SINGER, 101054787). Views
and opinions expressed are however those of the author(s) only and do not necessarily reflect those
of the European Union or the European Research Council. Neither the European Union nor the
granting authority can be held responsible for them.

References

Bansaye, Vincent, and Sylvie Méléard. 2015. Stochastic Models for Structured Populations. Springer
International Publishing.

Barrieu, Pauline, Harry Bensusan, Nicole El Karoui, Caroline Hillairet, Stéphane Loisel, Claudia
Ravanelli, and Yahia Salhi. 2012. “Understanding, Modelling and Managing Longevity Risk: Key
Issues and Main Challenges.” Scandinavian Actuarial Journal 2012 (3): 203–31.

Bensusan, Harry. 2010. “Interest rate and longevity risk: dynamicmodel and applications to derivative
products and life insurance.” Theses, Ecole Polytechnique X.

Billiard, Sylvain, Pierre Collet, Régis Ferrière, Sylvie Méléard, and Viet Chi Tran. 2016. “The Effect of
Competition and Horizontal Trait Inheritance on Invasion, Fixation, and Polymorphism.” Journal
of Theoretical Biology 411: 48–58.

Boumezoued, Alexandre. 2016. “Micro-macro analysis of heterogenous age-structured populations
dynamics.Application to self-exciting processes and demography.” Theses, Université Pierre et
Marie Curie.

Brémaud, Pierre. 1981. Point Processes and Queues: Martingale Dynamics. Vol. 66. Springer.
Calvez, Vincent, Susely Figueroa Iglesias, Hélène Hivert, Sylvie Méléard, Anna Melnykova, and

Samuel Nordmann. 2020. “Horizontal Gene Transfer: Numerical Comparison Between Stochastic
and Deterministic Approaches.” ESAIM: Proceedings and Surveys 67: 135–60.

Çinlar, Erhan. 2011. Probability and Stochastics. Springer New York.
Collet, Pierre, Sylvie Méléard, and Johan AJ Metz. 2013. “A Rigorous Model Study of the Adaptive

Dynamics of Mendelian Diploids.” Journal of Mathematical Biology 67: 569–607.
Costa, Manon, Céline Hauzy, Nicolas Loeuille, and SylvieMéléard. 2016. “Stochastic Eco-Evolutionary

Model of a Prey-Predator Community.” Journal of Mathematical Biology 72: 573–622.
Devroye, Luc. 1986. Nonuniform Random Variate Generation. Springer-Verlag, New York.
Eddelbuettel, Dirk, and Romain Francois. 2011. “Rcpp: Seamless r and c++ Integration.” Journal of

Statistical Software 40 (8): 1–18. https://doi.org/10.18637/jss.v040.i08.
El Karoui, Nicole, Kaouther Hadji, and Sarah Kaakai. 2021. “Simulating Long-Term Impacts of

Mortality Shocks: Learning from the Cholera Pandemic.” arXiv Preprint arXiv:2111.08338.
Ferrière, Régis, and Viet Chi Tran. 2009. “Stochastic and Deterministic Models for Age-Structured

Populations with Genetically Variable Traits.” In, 27:289–310. ESAIM Proc. EDP Sci., Les Ulis.
Fournier, Nicolas, and Sylvie Méléard. 2004. “A Microscopic Probabilistic Description of a Locally

Regulated Population and Macroscopic Approximations.” Ann. Appl. Probab. 14 (4): 1880–1919.

42

https://doi.org/10.18637/jss.v040.i08

Hyndman, Rob, Heather Booth Booth, Leonie Tickle Tickle, John Maindonald, Simon Wood Wood,
and R Core Team. 2023. demography: Forecasting Mortality, Fertility, Migration and Population
Data. https://cran.r-project.org/package=demography.

Kaakai, Sarah, and Nicole El Karoui. 2023. “Birth Death Swap Population in Random Environment
and Aggregation with Two Timescales.” Stochastic Processes and Their Applications 162: 218–48.
https://doi.org/https://doi.org/10.1016/j.spa.2023.04.017.

Kaakaï, Sarah, Héloïse Labit Hardy, Séverine Arnold, and Nicole El Karoui. 2019. “How Can a
Cause-of-Death Reduction Be Compensated for by the Population Heterogeneity? A Dynamic
Approach.” Insurance: Mathematics and Economics 89: 16–37. https://doi.org/https://doi.org/10.
1016/j.insmatheco.2019.07.005.

Kallenberg, Olav. 2017. Random Measures, Theory and Applications. Vol. 77. Probability Theory and
Stochastic Modelling. Springer, Cham.

Lavallée, François, Charline Smadi, Isabelle Alvarez, Björn Reineking, François-Marie Martin, Fanny
Dommanget, and Sophie Martin. 2019. “A Stochastic Individual-Based Model for the Growth
of a Stand of Japanese Knotweed Including Mowing as a Management Technique.” Ecological
Modelling 413: 108828.

Lewis, Peter, and Gerald Shedler. 1979. “Simulation of Nonhomogeneous Poisson Processes by
Thinning.” Naval Research Logistics Quarterly 26 (3): 403–13.

Méléard, Sylvie, Michael Rera, and Tristan Roget. 2019. “A Birth–Death Model of Ageing: From
Individual-Based Dynamics to Evolutive Differential Inclusions.” Journal of Mathematical Biology
79: 901–39.

Méléard, Sylvie, and Viet Chi Tran. 2009. “Trait Substitution Sequence Process and Canonical
Equation for Age-Structured Populations.” Journal of Mathematical Biology 58: 881–921.

Roget, T, Claire Macmurray, P Jolivet, S Méléard, and Michael Rera. 2024. “A Scenario for an
Evolutionary Selection of Ageing.” eLife 13.

Tran, Viet Chi. 2008. “Large Population Limit and Time Behaviour of a Stochastic Particle Model
Describing an Age-Structured Population.” ESAIM: Probability and Statistics 12: 345–86. https:
//doi.org/10.1051/ps:2007052.

Villegas, Andrés M., Vladimir K. Kaishev, and Pietro Millossovich. 2018. “StMoMo: An R Package for
Stochastic Mortality Modelling.” Journal of Statistical Software 84: 1–38.

Villegas, Andres, Pietro Millossovich, and Vladimir Kaishev Hyndman. 2018. StMoMo: Stochastic
Mortality Modelling. https://cran.r-project.org/package=StMoMo.

Zinn, Sabine. 2014. “The MicSim package of R: an entry-level toolkit for continuous-time microsimu-
lation.” International Journal of Microsimulation 7 (3): 3–32.

Zinn, Sabine, Jutta Gampe, Jan Himmelspach, and Adelinde M Uhrmacher. 2009. “MIC-CORE: A Tool
for Microsimulation.” In Proceedings of the 2009 Winter Simulation Conference (WSC), 992–1002.
IEEE.

Session information

sessionInfo()

R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.1 LTS

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.12.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

43

https://cran.r-project.org/package=demography
https://doi.org/10.1016/j.spa.2023.04.017
https://doi.org/10.1016/j.insmatheco.2019.07.005
https://doi.org/10.1016/j.insmatheco.2019.07.005
https://doi.org/10.1051/ps:2007052
https://doi.org/10.1051/ps:2007052
https://cran.r-project.org/package=StMoMo

locale:
[1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8
[4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8
[7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats graphics grDevices datasets utils methods base

other attached packages:
[1] reshape2_1.4.4 StMoMo_0.4.1 forecast_8.23.0 gnm_1.1-5
[5] IBMPopSim_1.1.0 ggplot2_3.5.1

loaded via a namespace (and not attached):
[1] dotCall64_1.2 gtable_0.3.5 spam_2.11-0
[4] xfun_0.44 lattice_0.22-6 tzdb_0.4.0
[7] quadprog_1.5-8 vctrs_0.6.5 tools_4.4.1
[10] generics_0.1.3 curl_6.0.1 parallel_4.4.1
[13] tibble_3.2.1 fansi_1.0.6 xts_0.14.1
[16] pkgconfig_2.0.3 Matrix_1.7-0 checkmate_2.3.2
[19] RColorBrewer_1.1-3 lifecycle_1.0.4 rootSolve_1.8.2.4
[22] farver_2.1.2 stringr_1.5.1 compiler_4.4.1
[25] fields_16.3 munsell_0.5.1 htmltools_0.5.8.1
[28] maps_3.4.2.1 yaml_2.3.8 pillar_1.9.0
[31] MASS_7.3-60.2 nlme_3.1-164 fracdiff_1.5-3
[34] tidyselect_1.2.1 fanplot_4.0.0 digest_0.6.35
[37] stringi_1.8.4 dplyr_1.1.4 labeling_0.4.3
[40] qvcalc_1.0.3 tseries_0.10-58 RcppArmadillo_14.2.0-1
[43] fastmap_1.2.0 grid_4.4.1 colorspace_2.1-0
[46] cli_3.6.2 magrittr_2.0.3 relimp_1.0-5
[49] utf8_1.2.4 readr_2.1.5 withr_3.0.0
[52] scales_1.3.0 backports_1.5.0 TTR_0.24.4
[55] rmarkdown_2.27 quantmod_0.4.26 nnet_7.3-19
[58] timeDate_4041.110 zoo_1.8-12 hms_1.1.3
[61] urca_1.3-4 evaluate_0.23 knitr_1.46
[64] lmtest_0.9-40 viridisLite_0.4.2 rlang_1.1.3
[67] Rcpp_1.0.13-1 glue_1.7.0 renv_1.0.7
[70] jsonlite_1.8.8 plyr_1.8.9 R6_2.5.1

44

	Introduction
	Brief overview of IBMPopSim
	Model creation
	Simulation

	Mathematical framework
	Population
	Individuals
	Population process

	Events
	Events intensity
	Events intensity bounds

	Pathwise representation of stochastic IBM
	Non-explosion criterion

	Population simulation
	Thinning of Poisson measure
	Multivariate Poisson process

	Simulation algorithm
	First event simulation

	Simulation algorithm with randomization

	Model creation and simulation with IBMPopSim
	Population
	Events
	Intensities
	Event kernel code

	Model creation
	Simulation

	Insurance portfolio
	Population
	Events
	Model creation and simulation
	Outputs

	Population with genetically variable traits
	Population
	Events
	Birth events
	Death events

	Model creation and simulation

	Appendix
	Recall on Poisson random measures
	Link with Poisson processes
	Marked Poisson measures on E = {\mathbb{R}}^+ \times F

	Pathwise representation of IBMs
	Proof of Theorem
	Proof of Lemma
	Alternative pathwise representation

	Proof of Theorem
	Acknowledgements

	References
	Session information

