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Abstract

In numerous applications, cloud of points do seem to exhibit repulsion in the intuitive sense
that there is no local cluster as in a Poisson process. Motivated by data coming from cellular
networks, we devise a classification algorithm based on the form of the Voronoi cells. We show
that, in the particular set of data we are given, we can retrieve some repulsiveness between
antennas, which was expected for engineering reasons.
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Figure 1: Left: Antennas in Paris. Right: Antennas in one frequency band only.

1 Introduction

In the performance analysis of cellular systems, the locations of antennas (or base stations) play a
major role (see Baccelli and Błaszczyszyn (2008)). It is usually admitted that they can be modeled
by a Poisson process. But the data which can be gathered from the Web site of the French National
Agency of Radio Frequencies, Cartoradio, see ANFR (n.d.), tend to prove that this may not be the case.
More precisely, if we look at the global picture of all antennas in Paris, we see features reminiscent
of a Poisson process (local clusters for instance), see Figure 1 (left). However, if we look closer and
finer, by specifying a region and a frequency band, we see that the antennas locations do seem to
exhibit some repulsion (see Figure 1, right picture).

In previous papers, point processes with repulsion have been used to model such systems (Deng,
Zhou, and Haenggi 2015; Miyoshi and Shirai 2016; Gomez et al. 2015) for no reason but a mere
resemblance between the pictures like the right picture in {numref}paris-orange-fig and those
obtained by simulating a point process with repulsion. The question is then to decide, given one
sample of positions of base stations in a bounded domain, whether it is more likely to be modeled
by a point process with repulsion or by a neutral point process, i.e. where the locations could be
considered as coming from independent drawings of some identically distributed random variables.
As we only have a single realization, we cannot use frequency methods. Since the observation
window is finite, we cannot either resort to estimates based on stationarity or ergodicity and we
must take care from the side effects.

The rationale behind our work comes from Goldman (2010). It is shown there that the Voronoi
cells of the Ginibre point process (a particular point process with repulsion, see below for the exact
definition) are in some sense more regular (closer to a circle) than those of a Poisson process (see
Equation 3 in Theorem 2.1). By simulation, this feature seems to persist for other point processes
with repulsion, like Gibbs processes. In Taylor et al. (2012), the surface of Voronoi cells is claimed
to be a good discrepancy indicator between Poisson process and several processes with repulsion
(Gibbs processes, Strauss processes with repulsion and the Geyer saturation model). For any of these
models, we do not have any closed formula on the surface of the Voronoi cells so the procedure
proposed in this paper is to simulate a large number of realizations of each of these processes and
compute the empirical mean and variance of the Voronoi cells area. They obtain mixed conclusions
as this sole indicator does not enable to rule out the Poisson hypothesis for many situations.

Our contribution is to consider the ratio of the surface by the squared perimeter instead of the surface
of the Voronoi cells alone. Actually, we can interpret the result of Goldman (2010) by saying that
the Voronoi cells of a Ginibre point process are more circular than those of a Poisson point process.
The isoperimetric inequality stands for any regular enough domain in the plane, 𝑅 = 4𝜋𝑆

𝑃2 is less than
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1 and the equality is obtained for disks. It is thus sensible to think that the ratio 𝑅 will be closer
to 1 for repulsive processes than for neutral point processes. Following the procedure of Taylor et
al. (2012), we show that we get a much better indicator by using 𝑅 instead 𝑆 alone to discriminate
between repulsive and neutral point processes.

However, for the application we have in mind, which is to decide for one single map which model is
the most pertinent, we cannot use this criterion based on probability. That is why we resort to an
ML model. After several tries, we concluded that the most efficient algorithm was to use Logistic
Regression. In a first step, we trained it on simulations of Ginibre and Poisson point processes.
The advantage of the Ginibre process is that we have efficient algorithm to simulate it (Laurent
Decreusefond and Moroz 2021) and it does not seem to alter the accuracy of our algorithm to use one
single class of repulsive point process. We remarked that we obtain a much better discrimination by
considering the mean value of 𝑅 for the five most central cells instead of just the most central one.
We can even improve our discrimination rate by adding to the input vector the value of each of the
five ratios.

Furthermore, the repulsion in the Ginibre class of point processes can be also modulated by making
a 𝛽-thinning (to weaken the repulsion) and then a √𝛽-dilation (to keep the same intensity of points
per surface unit) to obtain what is called a 𝛽-Ginibre. For 𝛽 = 1, we have the original Ginibre process
and when 𝛽 goes to 0, it tends in law to a Poisson process (see L. Decreusefond and Vasseur (2015))
so that we have a full scale of point processes with intermediate repulsion between 0 and 1. We
show that our logistic regression algorithm can still accurately discriminate between Poisson and
𝛽-repulsive point processes for 𝛽 up to 0.7.

The paper is organized as follows. We first remind what is a Ginibre point process and the property
of its Voronoi cells which motivates the sequel. Then two approaches are employed, one based on
statistics and the other on machine learning, to classify the processes and compare their efficiencies
and outcomes. Finally, tests are conducted on the Cartoradio data.

2 Preliminaries

We consider finite point processes on a bounded window 𝐸. The law of a such a point process 𝑁 can
be characterized by its correlation functions (for details we refer to Daley and Vere-Jones (2003, chap.
5)). These are symmetric functions (𝜌𝑘, 𝑘 ≥ 1) such that for any bounded function 𝑓, we can write:

𝔼 [∑
𝛼⊂𝑁

𝑓 (𝛼)] =
+∞
∑
𝑘=1

1
𝑘! ∫𝐸𝑘

𝑓 ({𝑥1, … , 𝑥𝑘})𝜌𝑘(𝑥1, … , 𝑥𝑘) 𝑑𝑥1…𝑑𝑥𝑘.

Intuitively speaking, 𝜌𝑘(𝑥1, … , 𝑥𝑘) 𝑑𝑥1…𝑑𝑥𝑘 represents the probability to observe in 𝑁, at least 𝑘
points located around the point 𝑥𝑗. For a Poisson point process of control measure 𝑚(𝑥) 𝑑𝑥, we have

𝜌𝑘(𝑥1, … , 𝑥𝑘) =
𝑘

∏
𝑗=1

𝑚(𝑥𝑗).

The Ginibre point process, restricted to 𝐸 = 𝐵(0, 𝑟), with intensity 𝜌 = 𝜆
𝜋 (with 𝜆 > 0) has

correlation functions (see L. Decreusefond, Flint, and Vergne (2015))

𝜌𝑘(𝑥1, … , 𝑥𝑘) = det(𝐾(𝑥𝑖, 𝑥𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑘) (1)

where 𝐾 is given by
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𝐾𝑟(𝑥, 𝑦) =
∞
∑
𝑗=1

𝛾 (𝑗 + 1, 𝑟2)
𝑗!

𝜙𝑗(𝑥)𝜙𝑗( ̄𝑦) (2)

with

𝜙𝑗(𝑥) =
√

𝜌
𝛾(𝑗 + 1, 𝑟2)

(√𝜆𝑥)
𝑗
𝑒−

𝜆
2 |𝑥 |

2

and 𝛾 (𝑛, 𝑥) is the lower incomplete Gamma function. The simulation of such a point process is a
delicate matter, first solved in Hough et al. (2006). It remains costly because the algorithm contains
complex calculations and some rejections. In order to fasten the procedure, an approximate algorithm,
with error estimates, has been given in Laurent Decreusefond and Moroz (2021) (see the bibliography
therein to get the URL of the Python code).

For an at most denumerable set of points {𝑥𝑛, 𝑛 ≥ 1}, the Voronoi cells are defined as the convex sets

𝒞(𝑥𝑖) = {𝑧 ∈ ℂ, |𝑧 − 𝑥𝑖| ≤ |𝑧 − 𝑥𝑗| for all 𝑗 ≠ 𝑖}.

When the points are drawn from a point process, we thus have a collection of random closed sets.
When the process under consideration is stationary with respect to translations, it is customary to
define the typical law of a Voronoi cell as the law of the cell containing the origin of ℝ2 when the
point process is taken under its Palm distribution (Goldman 2010; Baccelli and Błaszczyszyn 2009).
It turns out that we know the Palm distribution of the Poisson process (which is itself) and of the
Ginibre point process (the correlation functions are of the form Equation 1 with 𝐾 being 𝐾𝑅 with the
first term removed). We denote by 𝒞𝑝 (respectively 𝒞𝐺) the typical cell of the Voronoi tessellation
associated to a stationary Poisson process in ℂ with intensity 𝜆 (respectively to the Ginibre point
process of intensity 𝜌). One of the main theorems of Goldman (2010) is the following.

Theorem 2.1. When 𝑟 → 0,

𝔼 [𝑉 (𝒞𝐺 ∩ 𝐵(0, 𝑟))] = 𝔼 [𝑉 (𝒞𝑝 ∩ 𝐵(0, 𝑟))] (1 + 𝑟2𝑊 + ∘(𝑟2)) (3)

where 𝑊 is a positive random variable.

Theorem 2.1 shows that near the germs of the cells a more important part of the area is captured
in the Ginibre–Voronoi tessellation than in the Poisson–Voronoi tessellation. This is an indication
that the Voronoi cells of the Ginibre point process are more circular than those given by the Poisson
process. This can be corroborated by simulation as shows Figure 2.

As we know that circles saturate the isoperimetric inequality, it is sensible to consider classification
algorithms based on area and squared perimeter of Voronoi cells. In order to avoid side effects, we
concentrate on the innermost cells of the observation window.

3 Classification of Cartoradio data

The Cartoradio web site contains the locations (in GPS coordinates) and other informations about all
the antennas (or base stations) in metropolitan France for any operator, any frequency band and all
generation of wireless systems (2G to 5G). The capacity of an antenna depends on its power and
on the traffic demand it has to serve. Outside metropolitan areas, the antennas are relatively scarce
and located along the main roads to guarantee a large surface coverage (around 30 km2). Hence
there is no need to construct models for these regions. On the contrary, in big towns, the density of
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Figure 2: On the left, Voronoi cells associated to a realization of a Ginibre process. On the right,
Voronoi cells associated to a realization of a Poisson process.

base stations is much higher to handle the traffic demand: An antenna covers around half a squared
kilometer. This is where the dimensioning problem do appear. One should have a sufficient number
of antennas per unit of surface to transport all the traffic, on the other hand, base stations operating
in a given frequency band cannot be to close to mitigate interference. This explains the right picture
of Figure 1.

When it comes to assess the type of point process we should consider in this situation, we cannot
consider the city as a whole: the geography (notably the Seine river in Paris, the parks, etc.), the non
uniformity of demands (the traffic is heavier aroung railway stations or touristic sites, for instance)
which entails a higher density of antennas, ruin any kind of invariance a statistician could hope
for. For instance, the lack of homogeneity prevents the use of traditional repulsion criteria, such as
pair correlation. That means, we should restrict our expectations to local models of the size of a
district or a bit more. Since interference, which are the main annoyance to be dealt with, are a local
phenomenon, working on a partial part of the whole domain is sufficient to predict the behavior and
dimension a wireless network.

In the following sections, we will use Python code that assumes that the following packages have
been loaded:

3.1 Statistical approach

Given a circular domain with 𝑁 points, we want to decide whether the points exhibit repulsion or
not. To do so, we will begin with a statistical approach, where we will first calculate, for Poisson
processes as well as for Ginibre and 𝛽-Ginibre processes, the probability that the ratio 𝑅 = 4𝜋𝑆

𝑃2 of the
central cell is less than or equal to 𝑟, for values of 𝑟 ranging from 0 to 1. And then we apply the same
approach using the mean ratio of the five central cells. Finally, we will calculate 95% confidence
intervals for each of these processes.

The following code illustrates the generation of various point samples and the calculation of the
surface to squared perimeter ratios given the number of points 𝑁 and the parameter 𝛽 for 𝛽-Ginibre
processes. The Ginibre and 𝛽-Ginibre processes are generated using the “sample” function given in
the Python code of Laurent Decreusefond and Moroz (2021).
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Importing libraries ...
Compiling functions ...

The simulation algorithm provides a method for computing the quantity ℙ (4𝜋𝑆𝑃2 ≤ 𝑟) as a function of
𝑟 for the Ginibre processes (the same algorithm is applied to other processes as well). The Algorithm
takes as input the number of points 𝑁, the number of experiences for the simulation 𝑁𝑒𝑥𝑝 and the
range of the variable 𝑟 as a list of values. Since the simulations require a lot of time to run, we are
not going to attach the associated Python code, the latter is based on the algorithm described in the
following Python code using the functions defined previously.

Figure 3 shows the results of the simulations, where we compare the confidence intervals of the
poisson process with the Ginibre process and the 0.7-Ginibre process, using first the central cell and
then the five central cells.

Figure 3: Simulation results using the central cell (up) and the five central cells (down).

The limitation of the statistical approach using only the central cell is made visible by the presence
of some overlap between the confidence intervals of the Poisson process and that of the 0.7-Ginibre
process. Consequently, in specific cases, it may not be possible to determine the true nature of some
processes based on this statistical test. On the other hand, if we average the ratio of the five most
central cells (the cells whose centers are the closest to the origin), there is no longer an overlap
among the various curves.

This approach shows that the chosen ratio variable represents a good repulsion criterion. On the
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other hand, our objective is to decide for a single map which model is the most pertinent, and that
cannot be done by a frequentist approach. This is what motivated us to use a ML method.

3.2 Machine Learning approach

In this approach, we will use the same circular domain with 𝑁 points as in the statistical approach.
Since the repulsion is not sensitive to scaling, we normalize the radius to 𝑅 = √𝑁. This is due to the
fact that a cloud drawn from a Ginibre point process of intensity 1 with 𝑁 points occupies roughly
a disk with this radius. We begin by generating the data of the Ginibre process, the 0.7-Ginibre
process and the poisson process on which we will train the classification model, which is a Logistic
Regression Classifier. Using only the central cell (respectively the five most central cells), the initial
variables in our database consist of the surface and perimeter of the central cell (respectively surfaces
and perimeters of the five central cells) of each generated sample, along with a binary variable that
takes the value 1 if the process is repulsive and 0 otherwise. Subsequently, we add the ratio variable
4𝜋𝑆
𝑃2 of the central cell (respectively the five ratios of the five central cells) to provide the classification
model with additional information on which to base its predictions. The output of the classifier is
a composite score based on some statistics of the point process, tuned to discriminate between a
Poisson process and a repulsive point process.

As the generation of data requires considerable execution time, we will prepare the data locally
(using the previous code), by generating, for each classification, a sample of 5000 observations (2500
repulsive and 2500 non-repulsive) of 𝑁 = 50 points. Then we read them directly as follows:

Here is an example of the data created of configurations of 0.7-Ginibre and poisson processes with
one cell:

S1 P1 R1 process

0 3.282609 6.851499 0.878735 1
1 3.229371 7.052515 0.815905 0
2 5.542461 9.335383 0.799187 1
3 3.409986 8.318448 0.619267 0
4 4.336329 8.748695 0.711944 1

Before starting the model’s training using the data generated, we will scale the data in order to avoir
the concern of overfitting. Here is an example of the scaling of the previous data:

S1 P1 R1 process

0 -0.290349 -0.584119 1.447490 1
1 -0.326183 -0.439422 0.661112 0
2 1.230698 1.203856 0.451857 1
3 -0.204615 0.471835 -1.800031 0
4 0.418882 0.781540 -0.640083 1

Now that the data is gathered, we will train the Logistic Regression model using the baseline model,
i.e. all the hyperparameters’ values are taken as defaults, (a grid search can be used later in order to
select the optimal hyperparameters). Other classification models (Random Forest, Support Vector
Machine and XGBoost) have been tested but did not yield more significant results than the chosen
classifier. We split each data to a train data and test data in order to see the model’s accuracy before
testing it on the cartoradio data.

Here are the results of the classification using each data: - 0.7-Ginibre Vs Poisson using the central
cell:
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precision recall f1-score support

0 0.62 0.59 0.60 728
1 0.63 0.66 0.64 772

accuracy 0.62 1500
macro avg 0.62 0.62 0.62 1500

weighted avg 0.62 0.62 0.62 1500
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• Ginibre Vs Poisson using the central cell:

precision recall f1-score support

0 0.72 0.62 0.67 728
1 0.68 0.77 0.73 772

accuracy 0.70 1500
macro avg 0.70 0.70 0.70 1500

weighted avg 0.70 0.70 0.70 1500
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• 0.7-Ginibre Vs Poisson using the five central cells:

precision recall f1-score support

0 0.74 0.68 0.71 728
1 0.72 0.77 0.74 772

accuracy 0.73 1500
macro avg 0.73 0.72 0.72 1500

weighted avg 0.73 0.73 0.73 1500
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• Ginibre Vs Poisson using the five central cells:

precision recall f1-score support

0 0.87 0.81 0.84 728
1 0.83 0.88 0.86 772

accuracy 0.85 1500
macro avg 0.85 0.85 0.85 1500

weighted avg 0.85 0.85 0.85 1500
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Negative Positive
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We can notice that our model’s accuracy when using the central cell is approximately 70% for the
Ginibre and Poisson processes classification. However, when considering the first five central cells,
we achieve an accuracy of 85%, a result consistent with our statistical approach. This is because with
the five cells, the model has access to more information about the nature of the sample, increasing the
likelihood of successful sample classification by taking into account the surface areas and perimeters
of the first five central cells.

3.3 Cartoradio data Tests

Cartoradio data is a set of configurations of some mobile phone base stations in Paris. The goal is
to decide from the classification model already used, whether the configuration do present some
repulsion. serait The initial data (positions of the antennas) cover a large area of the city of Paris (see
Figure 4 (right)) With a real dataset, we often encounter the problem of heterogeneity between the
different parts of the configurations since they depend on the topology of the space in which the
antennas are placed.

To cope with this problem, we extract from each configuration a representative sample similar to the
type of training data so that the tests make sense. Figure 4 (left) shows a sample extracted from a
given configuration.

In the following, we read the cartoradio data directly from the “cartoradio_data.csv” file, then we add
the variables that represent the ratio of the first five central cell and finally we scale the data. Here is
the final (scaled) data on which we will test our model.

S1 P1 R1 S2 P2 R2 S3 P3 R3 S4 P4 R4 S5 P5 R5

0 0.666867 0.552371 0.771643 -1.320617 -0.826125 -0.776361 -0.096326 -0.168613 0.404993 -0.669259 -0.213674 -1.681895 -0.308449 0.204442 0.710274
1 -0.671167 -0.539183 -0.749317 0.190101 0.256283 -0.237297 0.631242 0.372228 1.268942 -1.348825 -1.325250 -1.007578 0.554746 0.445616 0.792127
2 -0.217555 -0.375224 0.929404 0.020793 -0.495321 1.305963 -1.264007 -1.425377 -0.384128 0.778718 0.508199 1.288062 -0.540157 -0.839995 0.838547
3 0.022384 0.160723 -0.473342 0.718430 0.472801 0.225675 -0.191550 -0.088225 -0.237366 0.982122 0.780987 1.037943 -0.600881 -1.105307 0.877342
4 2.098913 1.686911 1.622808 1.381928 1.424882 -0.729521 1.978979 1.785494 0.952267 -0.502795 -0.128419 -1.289489 -1.050843 -1.077248 0.791146

Here are the results of the tests on the cartoradio data using each model already trained, showing
the classification value and its probability for each observation.

• 0.7-Ginibre Vs Poisson using the central cell:

Classification results: [0 0 1 0 0 0 0 1 1 1]
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Figure 4: On the left, Initial cartoradio configuration. On the right, Sample extracted from it and
scaled.

Classification probabilities:
[[0.50901223 0.49098777]
[0.50682086 0.49317914]
[0.32929348 0.67070652]
[0.5688858 0.4311142 ]
[0.70307381 0.29692619]
[0.82600168 0.17399832]
[0.59522974 0.40477026]
[0.48553916 0.51446084]
[0.26526311 0.73473689]
[0.32029901 0.67970099]]

• Ginibre Vs Poisson using the central cell:

Classification results: [0 0 1 0 0 0 0 1 1 1]
Classification probabilities:
[[0.53920106 0.46079894]
[0.51723198 0.48276802]
[0.21819289 0.78180711]
[0.63278587 0.36721413]
[0.86607864 0.13392136]
[0.94845955 0.05154045]
[0.6786939 0.3213061 ]
[0.47850291 0.52149709]
[0.13669341 0.86330659]
[0.20399197 0.79600803]]

It can be noted that the classification results using only the central cell are not significant enough.
This is largely due to the low accuracy of the model used with the central cell, which is normal since
the data does not contain enough variables for the model’s training.

• 0.7-Ginibre Vs Poisson using the five central cell:

Classification results: [1 0 1 0 0 0 1 1 1 1]
Classification probabilities:
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[[0.09769033 0.90230967]
[0.52006646 0.47993354]
[0.26792874 0.73207126]
[0.64697624 0.35302376]
[0.78613725 0.21386275]
[0.8428339 0.1571661 ]
[0.26825798 0.73174202]
[0.23098875 0.76901125]
[0.17152636 0.82847364]
[0.07711947 0.92288053]]

• Ginibre Vs Poisson using the five central cell:

Classification results: [1 0 1 0 0 0 1 1 1 1]
Classification probabilities:
[[0.02251152 0.97748848]
[0.51505581 0.48494419]
[0.22926168 0.77073832]
[0.83308711 0.16691289]
[0.97698632 0.02301368]
[0.96058932 0.03941068]
[0.28009441 0.71990559]
[0.09008345 0.90991655]
[0.08552465 0.91447535]
[0.01824254 0.98175746]]

In contrast, the results found using the five central cells are much better, the majority of configurations
are classified as repulsive. Regarding the configurations classified as non-repulsive by our model,
we can say that this comes down to one of the following two reasons: - As long as we are dealing
with real data, these samples may be a non-repulsive ones and the results are actually coherent. - It
is sure that the accuracy of our models is high, but we may have some classification errors, which
means that even if the configuration is repulsive, the model decides that it is not.

4 Conclusion

In this paper it has been shown numerically (based on the theoretical results in Goldman (2010)) that
Voronoi cells represent an effective means for determining the nature of repulsion of a configuration
(repulsive or not), and this by creating a database of various configurations and extracting the areas
and perimeters of the Voronoi cells in order to use them as input to the classification model described
earlier.

Once the model is trained and tested on the data created, it is tested after that on real data, which
are the positions of a mobile phone base stations in Paris. Visually, we can easily say that these
configurations are repulsive, which we have confirmed for the majority of these configurations by
testing them by the previously trained model, especially the one classifying Ginibre and poisson
processes using the first five central cells.
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